科目:高中數(shù)學 來源: 題型:
(1)若x1=-1,x2=2,求函數(shù)f(x)的解析式;
(2)若|x1|+|x2|=,求b的最大值;
(3)若x1<x<x2,且x2=a,函數(shù)g(x)=f′(x)-a(x-x1),求證:|g(x)|≤a(3a+2)2.
(文)如圖,N為圓x2+(y-2)2=4上的點,OM為直徑,連結MN并延長交x軸于點C,過C引直線垂直于x軸,且與弦ON的延長線交于點D.
(1)已知點N(,1),求點D的坐標;
(2)若點N沿著圓周運動,求點D的軌跡E的方程;
(3)設P(0,a)(a>0),Q是點P關于原點的對稱點,直線l過點P交曲線E于A、B兩點,點H在射線QB上,且AH⊥PQ,求證:不論l繞點P怎樣轉動,恒有.
查看答案和解析>>
科目:高中數(shù)學 來源:2013年上海市長寧、嘉定區(qū)高考數(shù)學二模試卷(文科)(解析版) 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com