2.函數(shù)y=($\frac{1}{2-a}$)x+1+3(a<2),圖象必經(jīng)過點(-1,4).

分析 根據(jù)指數(shù)函數(shù)的性質(zhì),令x+1=0計算函數(shù)值即可得出定點坐標(biāo).

解答 解:令x+1=0,即x=-1,
則y=($\frac{1}{2-a}$)0+3=4.
∴y=($\frac{1}{2-a}$)x+1+3的函數(shù)圖象過定點(-1,4).
故答案為:(-1,4).

點評 本題考查了指數(shù)函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ln(x+1)-x
(1)若k∈z,且f(x-1)+x>k(1-$\frac{3}{x}$)對任意x>1恒成立,求k的最大值.
(2)對于在(0,1)中的任意一個常數(shù)a,是否存在正數(shù)x0,使得ef(x0<1-$\frac{a}{2}$x02成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)直線的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=-2+2t}\end{array}\right.$,它與橢圓$\frac{4{x}^{2}}{9}$+$\frac{{y}^{2}}{9}$=1的交點為A和B,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=a+xlnx有兩個零點,則實數(shù)a的取值范圍為(  )
A.[0,$\frac{1}{e}$]B.(0,$\frac{1}{e}$)C.(0,$\frac{1}{e}$]D.(-$\frac{1}{e}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示,正方形ABCD的邊長為2,E,F(xiàn)分別為AB,AD的中點,G為線段CE上的一個動點,設(shè)$\frac{CG}{CE}$=x,S△GDF=y,則函數(shù)y=f(x)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.命題p:“?x∈[0,$\frac{π}{4}$],tanx≤m”恒成立,命題q:“f(x)=x2+m,g(x)=($\frac{1}{2}$)x-m,對?x1∈[-1,3],?x2∈[0,2],f(x1)≥g(x2)成立”,若p∧q為假,p∨q為真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}滿足a1=10,an+1-an=2n(n∈N*),則$\frac{a_n}{n}$的最小值為$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.高三畢業(yè)時,甲、乙、丙、丁四位同學(xué)站成一排合影留念,則甲乙相鄰的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=$\frac{\sqrt{lo{g}_{2}x}}{lo{g}_{2}(3-x)}$的定義域為{x|1≤x<3且x≠2}.

查看答案和解析>>

同步練習(xí)冊答案