已知數(shù)列的前項的和為,求證:數(shù)列為等差數(shù)列的充要條件是
詳見解析.

試題分析:從兩個方面來證明此題:若數(shù)列為等差數(shù)列,則其前項和是關(guān)于的二次函數(shù),且常數(shù)項為,即;若的前項和,可根據(jù)其前項和求出通項公式,從而可以證明其為等差數(shù)列.
試題解析:證:若數(shù)列為等差數(shù)列,則其前項和,是關(guān)于的二次函數(shù),且常數(shù)項為,而的前項和,所以
反過來,當數(shù)列的前項和,則,當時,,時, ,因為也符合,所以數(shù)列的通項公式為,所以數(shù)列是以為首項,為公差的等差數(shù)列.
綜上所述,數(shù)列為等差數(shù)列的充要條件是項和公式以及充分必要條件的關(guān)系.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是曲線C:上的一點(其中),過點作與曲線C在處的切線垂直的直線軸于點,過作與軸垂直的直線與曲線C在第一象限交于點;再過點作與曲線C在處的切線垂直的直線交軸于點,過作與軸垂直的直線與曲線C在第一象限交于點;如此繼續(xù)下去,得一系列的點、、、、。(其中

(1)求數(shù)列的通項公式。
(2)若,且是數(shù)列的前項和,是數(shù)列的前

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

三個數(shù)成等比數(shù)列,其積為512,如果第一個數(shù)與第三個數(shù)各減2,則成等差數(shù)列,求這三個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)數(shù)列的各項都是正數(shù),且對任意,都有,其中 為數(shù)列的前項和。
(1)求證數(shù)列是等差數(shù)列;
(2)若數(shù)列的前項和為Tn,求Tn。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在等差數(shù)列中,,其前項和為,等比數(shù)列的各項均為正數(shù),,公比為,且.
(1)求;(2)設(shè)數(shù)列滿足,求的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等差數(shù)列中,.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)當取最大值時求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)等差數(shù)列的前項和為,滿足:.遞增的等比數(shù)列項和為,滿足:
(Ⅰ)求數(shù)列,的通項公式;
(Ⅱ)設(shè)數(shù)列,均有成立,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等比數(shù)列{an}的前n項和Sn=2n-a,n∈N*.設(shè)公差不為零的等差數(shù)列{bn}滿足:b1=a1+2,且b2+5,b4+5,b8+5成等比數(shù)列.
(Ⅰ)求a的值及數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{logan}的前n項和為Tn.求使Tn>bn的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等差數(shù)列滿足,,則前n項和取最大值時,n的值為(     )
A.20B.21C.22D.23

查看答案和解析>>

同步練習冊答案