A. | $\frac{4π}{3}$ | B. | $\frac{8π}{3}$ | C. | $\frac{{5\sqrt{5}π}}{6}$ | D. | $\sqrt{5}π$ |
分析 幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,結(jié)合直觀圖判斷外接球球心的位置,求出半徑,代入球的體積公式計算即可.
解答 解:由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,高為1,
底面為等腰直角三角形,斜邊長為2,如圖:
∴△ABC的外接圓的圓心為斜邊AC的中點D,OD⊥AC,且OD?平面SAC,
∵SA=1,AC=2,∴SC的中點O為外接球的球心,
∴半徑R=$\frac{\sqrt{5}}{2}$,
∴外接球的體積V=$\frac{4}{3}$π×($\frac{\sqrt{5}}{2}$)3=$\frac{5\sqrt{5}}{6}$π.
故選:C.
點評 本題考查了由三視圖求幾何體的外接球的體積,根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征,利用幾何體的結(jié)構(gòu)特征與數(shù)據(jù)求得外接球的半徑是解答本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,+∞) | B. | (-∞,0] | C. | (-∞,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{9}{4}$,+∞) | B. | [2,+∞) | C. | (-∞,$\frac{9}{4}$] | D. | (-∞,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | am>bm,則a>b | B. | a>b,則am>bm | C. | am2>bm2,則a>b | D. | a>b,則am2>bm2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | 2$\sqrt{2}$-3 | C. | 2$\sqrt{2}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com