6.從甲、乙、丙、丁四位同學(xué)中選拔一位成績(jī)較穩(wěn)定的優(yōu)秀選手,參加山東省職業(yè)院校技能大賽,在同樣條件下經(jīng)過(guò)多輪測(cè)試,成績(jī)分析如表所示,根據(jù)表中數(shù)據(jù)判斷,最佳人選為( 。
成績(jī)分析表
 
平均成績(jī)$\overline{x}$96968585
標(biāo)準(zhǔn)差s4242
A.B.C.D.

分析 根據(jù)平均成績(jī)高且標(biāo)準(zhǔn)差小,兩項(xiàng)指標(biāo)選擇即可.

解答 解:根據(jù)表中數(shù)據(jù)知,平均成績(jī)較高的是甲和乙,標(biāo)準(zhǔn)差較小的是乙和丙,
由此知乙同學(xué)成績(jī)較高,且發(fā)揮穩(wěn)定,應(yīng)選乙參加.
故選:B.

點(diǎn)評(píng) 本題考查了平均數(shù)與標(biāo)準(zhǔn)差的定義與應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求下列各式的值
(1)$\frac{tan(-150°)•cos(-570°)•cos(-1140°)}{tan(-210°)•sin(-690°)}$
(2)$sin\frac{25π}{6}+cos\frac{25π}{3}+tan(-\frac{25π}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)集合A={y|y=cosx,x∈R},B={y|y=2x,x∈A},則A∩B=( 。
A.$[{\frac{1}{2},1}]$B.[1,2]C.$[{0,\frac{1}{2}}]$D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)$y=\frac{1}{{\sqrt{|x|-2}}}$的定義域是( 。
A.[-2,2]B.(-∞,-2]∪[2,+∞)C.(-2,2)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如果$|\overrightarrow a|=3$,$\overrightarrow b=-2\overrightarrow a$,那么$\overrightarrow a•\overrightarrow b$等于( 。
A.-18B.-6C.0D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知集合A={(x,y)|y=x+1},集合B={(x,y)|y=2x},則集合A∩B等于( 。
A.(1,2)B.{1,2}C.{(1,2)}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若$({x+3}){({1-\frac{2}{{\sqrt{x}}}})^n}$的展開式中常數(shù)項(xiàng)為43,則$\int_2^n{2xdx=}$21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若(x3+$\frac{1}{{x}^{2}}$)n展開式中只有第6項(xiàng)系數(shù)最大,則展開式的常數(shù)項(xiàng)是(  )
A.210B.120C.461D.416

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3處取得極值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,4]上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案