如圖,已知雙曲線C1
y2
m
-
x2
n
=1(m>0,n>0),圓C2:(x-2)2+y2=2,雙曲線C1的兩條漸近線與圓C2相切,且雙曲線C1的一個頂點A與圓心C2關于直線y=x對稱,設斜率為k的直線l過點C2
(1)求雙曲線C1的方程;
(2)當k=1時,在雙曲線C1的上支上求一點P,使其與直線l的距離為2.
分析:(1)設雙曲線的漸近線為y=±
m
n
x,由雙曲線C1的兩漸近線與圓C2:(x-2)2+y2=2相切及由A(0,
m
)與圓心C2(2,0)關于直線y=x對稱,求出m,n的值,從而能求出雙曲線的方程.
(2)當k=1時,由l過點C2(2,0)知直線l的方程,設雙曲線C1上支上一點P(x0,y0)到直線l的距離為2,建立關于點P坐標的方程組,由此能求出P點的坐標.
解答:解:(1)雙曲線C1的兩條漸近線方程為:
y=±
m
n
x,頂點A為(0,
m

∵雙曲線C1的兩漸近線與圓C2:(x-2)2+y2=2相切
|±2
m
n
|
1+
m
n
=
2

2m
m+n
=1                  ①
又∵A(0,
m
)與圓心C2(2,0)關于直線y=x對稱
m
=2                    ②
由①、②解得:m=n=4
故雙曲線C1的方程為:y2-x2=4
(2)當k=1時,由l過點C2(2,0)知:
直線l的方程為:y=x-2
設雙曲線C1上支上一點P(x0,y0)到直線l的距離為2,則
y02-x02=4,且
|x0-y0-2|
2
=2,
又∵點P(x0,y0)在雙曲線C1的上支上,故y0>0
解得:x0=2,y0=2
2

故點P的坐標為(2,2
2
).
點評:本題考查軌跡方程的求法和已知k的值及此時P點的坐標.解題時要認真審題,注意挖掘題設中的隱含條件,靈活運用雙曲線的性質(zhì),合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•上海)如圖,已知雙曲線C1
x2
2
-y2=1
,曲線C2:|y|=|x|+1,P是平面內(nèi)一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1-C2型點”
(1)在正確證明C1的左焦點是“C1-C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1-C2型點”;
(3)求證:圓x2+y2=
1
2
內(nèi)的點都不是“C1-C2型點”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知雙曲線C1:,曲線C2:.P是平面內(nèi)一點.若存在過點P的直線與C1、C2都有共同點,則稱P為“C1-C2型點”.

(1)在正確證明C1的左焦點是“C1-C2型點”時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);

(2)設直線y=kx與C2有公共點,求證>1,進而證明圓點不是“C1-C2型點”;

(3)求證:圓內(nèi)的點都不是“C1-C2型點”.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年全國普通高等學校招生統(tǒng)一考試文科數(shù)學(上海卷解析版) 題型:填空題

如圖,已知雙曲線C1,曲線C2:|y|=|x|+1,P是平面內(nèi)一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1﹣C2型點“

(1)在正確證明C1的左焦點是“C1﹣C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);

(2)設直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1﹣C2型點”;

(3)求證:圓x2+y2=內(nèi)的點都不是“C1﹣C2型點”

 

查看答案和解析>>

科目:高中數(shù)學 來源:上海 題型:解答題

如圖,已知雙曲線C1
x2
2
-y2=1
,曲線C2:|y|=|x|+1,P是平面內(nèi)一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1-C2型點“
(1)在正確證明C1的左焦點是“C1-C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1-C2型點”;
(3)求證:圓x2+y2=
1
2
內(nèi)的點都不是“C1-C2型點”
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案