(本題滿分12分)如圖,在三棱錐中,

底面,點,

分別在棱上,且

(Ⅰ)求證:平面

(Ⅱ)當的中點時,求與平面所成的角的正弦;

(Ⅲ)是否存在點使得二面角為直二面角?并說明理由.

 

【答案】

(Ⅰ)見解析(Ⅱ)(Ⅲ)存在點E使得二面角是直二面角.

【解析】

試題分析:以A為原煤點建立空間直角坐標系,設(shè),由已知可得

.

(Ⅰ)∵,

,∴BC⊥AP.又∵,∴BC⊥AC,∴BC⊥平面PAC.

(Ⅱ)∵D為PB的中點,DE//BC,∴E為PC的中點,∴,

∴又由(Ⅰ)知,BC⊥平面PAC,∴∴DE⊥平面PAC,垂足為點E.∴∠DAE是AD與平面PAC所成的角,

,∴.

與平面所成的角的大小.

(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,

又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,∴∠AEP為二面角的平面角,

∵PA⊥底面ABC,∴PA⊥AC,∴.∴在棱PC上存在一點E,使得AE⊥PC,這時,故存在點E使得二面角是直二面角.

考點:平行垂直的證明及求線面角,二面角

點評:空間向量在解決立體幾何中的用處非常廣泛,可使題目簡化

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014屆江西高安中學高二上期末考試理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)

如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. 的中點.

(1)當時,求平面與平面的夾角的余弦值;

(2)當為何值時,在棱上存在點,使平面?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省八市高三3月聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側(cè)棱,為中點,中點,上一個動點.

(Ⅰ)確定點的位置,使得;

(Ⅱ)當時,求二面角的平

面角余弦值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣西桂林中學高三7月月考試題理科數(shù)學 題型:解答題

(本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點,F(xiàn)是AD的中點.

 ⑴求異面直線PD與AE所成角的大;

 ⑵求證:EF⊥平面PBC ;

 ⑶求二面角F—PC—B的大。.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年湖南省招生統(tǒng)一考試文科數(shù)學 題型:解答題

 

(本題滿分12分)

如圖3,在圓錐中,已知的直徑的中點.

(I)證明:

(II)求直線和平面所成角的正弦值.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年海南省高三五校聯(lián)考數(shù)學(文) 題型:解答題

(本題滿分12分)

如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點,SA=SB=SC。

   (1)求證:BC⊥平面SDE;

   (2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。

 

查看答案和解析>>

同步練習冊答案