設(shè)點(a,b)是區(qū)域
x+y-4≤0
x>0
y>0
內(nèi)的隨機點,函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)上是增函數(shù)的概率為( 。
A、
1
4
B、
2
3
C、
1
3
D、
1
2
考點:幾何概型,簡單線性規(guī)劃
專題:概率與統(tǒng)計
分析:作出不等式組對應(yīng)的平面區(qū)域,根據(jù)概率的幾何概型的概率公式進行計算即可得到結(jié)論.
解答: 解:作出不等式組
x+y-4≤0
x>0
y>0
對應(yīng)的平面區(qū)域如圖:對應(yīng)的圖形為△OAB,其中對應(yīng)面積為S=
1
2
×4×4=8
,
若f(x)=ax2-4bx+1在區(qū)間[1,+∞)上是增函數(shù),
則滿足a>0且對稱軸x=-
-4b
2a
=
2b
a
≤1
,
a>0
a≥2b
,對應(yīng)的平面區(qū)域為△OBC,
a=2b
a+b-4=0
,
解得
a=
8
3
b=
4
3

∴對應(yīng)的面積為S 1=
1
2
×4×
4
3
=
8
3
,
∴根據(jù)幾何概型的概率公式可知所求的概率為
8
3
8
=
1
3
,
故選:C
點評:本題主要考查幾何概型的概率公式的計算,作出不等式組對應(yīng)的平面區(qū)域是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩組各有三名同學(xué),他們在一次測驗中的成績的莖葉圖如圖所示,如果分別從甲、乙兩組中各隨機挑選一名同學(xué),則這兩名同學(xué)成績相同的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三第一次?贾,對總分450分(含450分)以上的成績進行統(tǒng)計,其頻率分布直方圖如圖所示,若650~700分數(shù)段的人數(shù)為90,則500~550分數(shù)段的人數(shù)為
 
人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題若“a2=b2,則a=b”為
 
命題(填真或假)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一張方桌的圖案如圖所示,將一顆豆子隨機地扔到桌面上,假設(shè)豆子不落在線上,下列事件的概率
(1)豆子落在紅色區(qū)域概率為
4
9
;
(2)豆子落在黃色區(qū)域概率為
1
3

(3)豆子落在綠色區(qū)域概率為
2
9
;
(4)豆子落在紅色或綠色區(qū)域概率為
1
3
;     
(5)豆子落在黃色或綠色區(qū)域概率為
4
9

其中正確的結(jié)論有(  )
A、2個B、3個C、4個D、5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標原點,P1、P2是雙曲線
x2
9
-
y2
4
=1
上的點.P是線段P1P2的中點,直線OP、P1P2的斜率分別為k1、k2,若2≤k1≤4,則k2的取值范圍是(  )
A、[
1
3
,
2
3
]
B、[
1
9
,
2
9
]
C、[
1
3
,
4
9
]
D、[
4
9
,
2
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足約束條件
x+y≥1
x-y≥-1
2x-y≤2
,則目標函數(shù)z=2x-3y的最大值(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若“p或q”是假命題,則“﹁p且﹁q”是真命題;
②若|x|>|y|,則x2>y2;
③若關(guān)于x的實系數(shù)一元二次不等式ax2+bx+c≤0的解集為∅,則必有a>0且△≤0;
x>2
y>2
?
x+y>4
xy>4

其中真命題的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinx+sin(x+
π
3
).
(1)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(2)在△ABC中,設(shè)角A,B的對邊分別為a,b,若B=2A,且b=2af(A-
π
6
),求角C的大。

查看答案和解析>>

同步練習(xí)冊答案