【題目】已知函數(shù) ,實數(shù)a>0.
(Ⅰ)若a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x>0時,不等式f(x)<0恒成立,求實數(shù)a的最大值.
【答案】解:(Ⅰ)a=2時,f(x)=ln(1+x)﹣ ,f′(x)= ﹣ = .(x>﹣1). ∴函數(shù)f(x)的單增區(qū)間為(0,+∞);單減區(qū)間為(﹣1,0).
(Ⅱ)函數(shù) ,實數(shù)a>0.f(0)=0.(x>0).
f′(x)= ﹣
= .
令g(x)=(1+x)a﹣(1+x)+ax,g(0)=0.
a≤0時,可得:g(x)<0,f′(x)<0,函數(shù)f(x)單調(diào)遞減,∴f(x)<f(0)=0,滿足條件.
g′(x)=a(1+x)a﹣1+a,令x=0,則g′(0)=2a﹣1.
當0<a 時,g′(x)≤0,函數(shù)g(x)單調(diào)遞減,∴g(x)<g(0)=0.f′(x)<0,函數(shù)f(x)單調(diào)遞減,∴f(x)<f(0)=0,滿足條件.
a 時,存在x0>0,使得g′(x0)=0,g′(x)>0,函數(shù)g(x)在(0,x0)上單調(diào)遞增,g(x)>g(0).
從而f(x)在(0,x0)上單調(diào)遞增,f(x)>f(0)=0,不滿足條件,舍去.
綜上可得:a .
即a的最大值為:
【解析】(Ⅰ)a=2時,f(x)=ln(1+x)﹣ ,f′(x)= .(x>﹣1).即可得出單調(diào)區(qū)間.(Ⅱ)函數(shù) ,實數(shù)a>0.f(0)=0.(x>0).可得f′(x)= .令g(x)=(1+x)a﹣(1+x)+ax,g(0)=0.對a分類討論,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可得出.
【考點精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計,截至2016年底全國微信注冊用戶數(shù)量已經(jīng)突破9.27億,為調(diào)查大學(xué)生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從某市大學(xué)生中隨機抽取100位同學(xué)進行了抽樣調(diào)查,結(jié)果如下:
微信群數(shù)量(個) | 頻數(shù) | 頻率 |
0~4 | 0.15 | |
5~8 | 40 | 0.4 |
9~12 | 25 | |
13~16 | a | c |
16以上 | 5 | b |
合計 | 100 | 1 |
(Ⅰ)求a,b,c的值及樣本中微信群個數(shù)超過12的概率;
(Ⅱ)若從這100位同學(xué)中隨機抽取2人,求這2人中恰有1人微信群個數(shù)超過12的概率;
(Ⅲ)以(1)中的頻率作為概率,若從全市大學(xué)生中隨機抽取3人,記X表示抽到的是微信群個數(shù)超過12的人數(shù),求X的分布列和數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,圓C的極坐標方程為ρ=4cosθ,直線l與圓C交于A,B兩點.
(1)求圓C的直角坐標方程及弦AB的長;
(2)動點P在圓C上(不與A,B重合),試求△ABP的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的左焦點為F,直線y=kx(k>0)與橢圓C交于A,B兩點,若 ,則C的離心率取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF.若,,cos ∠ABF=,則C的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從邊長為2a的正方形鐵片的四個角各截去一個邊長為x的正方形,然后折成一個無蓋的長方體盒子,要求長方體的高度x與底面正方形邊長的比不超過正數(shù)t.
(1)把鐵盒的容積V表示為關(guān)于x的函數(shù),并指出其定義域.
(2)當x為何值時,容積V有最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln x-mx+n,m,n∈R.
(1)若函數(shù)f(x)的圖像在點(1,f(1))處的切線為y=2x-1,求m,n的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若n=0,不等式f(x)+m<0對x∈(1,+∞)恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com