已知函數(shù)f(x)=
6x+b
x2+4
的最大值為
9
4
,求b的值.
考點(diǎn):函數(shù)的最值及其幾何意義
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用判別式法,求函數(shù)的最值,即可得出結(jié)論.
解答: 解:令y=
6x+b
x2+4
,則yx2-6x+4y-b=0,
∴△=36-4y(4y-b),
∵函數(shù)f(x)=
6x+b
x2+4
的最大值為
9
4
,
∴36-4×
9
4
(4×
9
4
-b)=0,
∴b=5.
點(diǎn)評:本題考查函數(shù)的最值及其幾何意義,考查判別式法的運(yùn)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
x2+1
+
(4-x)2+4
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex
(Ⅰ)當(dāng)x>0時(shí),設(shè)g(x)=f(x)-(a+1)x(a∈R).討論函數(shù)g(x)的單調(diào)性;
(Ⅱ)證明當(dāng)x∈[
1
2
,1]時(shí),f(x)<x2+x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由數(shù)字1,2,3組成的n位數(shù),1,2,3每個(gè)至少出現(xiàn)一次,這樣的n位數(shù)共有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對任意x,y∈R都滿足f(x+y)=f(x)+f(y)+1,且f(
1
2
)=0,數(shù)列{an}滿足:an=f(n),n∈N*
(Ⅰ)求f(0)及f(1)的值;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)若bn=(
1
4
 an-(
1
2
 3+an,試問數(shù)列{bn}是否存在最大項(xiàng)和最小項(xiàng)?若存在,求出最大項(xiàng)和最小項(xiàng);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x,數(shù)列{an}中,2an+1-2an+an+1an=0,a1=1且an≠0,若數(shù)列{bn}中,b1=2且bn=f(
1
an-1
)(n≥2).
(Ⅰ)求證:數(shù)列{
1
an
}是等差數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{
bn
an
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3ax2+2bx的單調(diào)遞減區(qū)間為(-
1
3
,1),單調(diào)遞增區(qū)間為(-∞,-
1
3
)和(1,+∞),
(1)求a,b的值;
(2)若不等式f(x)≥k2+7k在區(qū)間[-2,2]上恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a3=5,a5-2a2=3,又等比數(shù)列{bn}中,b1=3且公比q=3.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若aij表示n×n階矩陣
1247
35812
691318
10141925
?????ann
中第i行、第j列的元素(i、j=1,2,3,…,n),則ann=
 
(結(jié)果用含有n的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案