已知某幾何體的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形,則此幾何體的體積V=
 
考點:由三視圖求面積、體積
專題:計算題,空間位置關系與距離
分析:由三視圖知幾何體為四棱錐,畫出其直觀圖,根據(jù)三視圖的數(shù)據(jù)求底面面積與高,代入棱錐的體積公式計算.
解答: 解:由三視圖知幾何體為四棱錐,其直觀圖如圖:

四棱錐的高為4,底面為直角梯形的面積S=
1
2
(2+4)×4=12,
∴幾何體的體積V=
1
3
×12×4=16.
故答案為:16.
點評:本題考查了由三視圖求幾何體的體積,解題的關鍵是由三視圖判斷幾何體的形狀及三視圖的數(shù)據(jù)所對應的幾何量.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x(3-x)
+
x-1
的定義域為( 。
A、[0,3]
B、[1,3]
C、[1,+∞)
D、[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線與直線l:x+
3
y=0垂直,且C的一個焦點到l的距離為2,則C的標準方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
x-a
+
b-x
的單調(diào)遞減區(qū)間是(
5
3
,6
),則y的最大值是( 。
A、
29
3
B、
33
3
C、
35
3
D、
2
39
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式|2x+1|-|x-1|>2的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
 
A、
16
3
B、
32
3
C、16
D、32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,已知曲線C:ρ=2sinθ,過極點O的直線l與曲線C交于A,B兩點,且AB=
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
a
b
,其中
a
=(2cosx,-
3
sin2x),
b
=(cosx,1),x∈R.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,f(A)=-1,a=
7
,且向量
m
=(3,sinB)與
n
=(2,sinC)共線,求邊長b和c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲乙兩名同學參加某種選拔測試,在相同測試條件下,兩人5次測試的成績(單位:分)如下表:
 第1次第2次第3次第4次第5次
6063758087
5565777889
(1)請計算甲、乙兩人成績的平均數(shù)和方差,并據(jù)此判斷選派誰參賽更好
(2)若從甲、乙兩人5次的成績中各隨機抽取一個成績進行分析,設抽到的兩個成績中,80分以上的個數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案