已知圓C的圓心與點(diǎn)關(guān)于直線(xiàn)對(duì)稱(chēng).直線(xiàn)與圓C相交于兩點(diǎn),且,求圓C的方程.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓,直線(xiàn).
(Ⅰ)若與相切,求的值;
(Ⅱ)是否存在值,使得與相交于兩點(diǎn),且(其中為坐標(biāo)原點(diǎn)),若存在,求出,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)的極坐標(biāo)方程是,曲線(xiàn)的參數(shù)方程是
是參數(shù)).
(1)寫(xiě)出曲線(xiàn)的直角坐標(biāo)方程和曲線(xiàn)的普通方程;
(2)求的取值范圍,使得,沒(méi)有公共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)在直角坐標(biāo)系xOy中,曲線(xiàn)C1的點(diǎn)均在C2:(x-5)2+y2=9外,且對(duì)C1上任意一點(diǎn)M,M到直線(xiàn)x=﹣2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(1)求曲線(xiàn)C1的方程;
(2)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過(guò)P作圓C2的兩條切線(xiàn),分別與曲線(xiàn)C1相交于
點(diǎn)A,B和C,D.證明:當(dāng)P在直線(xiàn)x=﹣4上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分14分)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為圓心的圓與直線(xiàn):相切.
(1)求圓的方程;
(2)若圓上有兩點(diǎn)關(guān)于直線(xiàn)對(duì)稱(chēng),且,求直線(xiàn)MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分) 已知圓的圓心在軸上,半徑為1,直線(xiàn),被圓所截的弦長(zhǎng)為,且圓心在直線(xiàn)的下方.
(I)求圓的方程;
(II)設(shè),若圓是的內(nèi)切圓,求△的面積
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)O為坐標(biāo)原點(diǎn),曲線(xiàn)x2+y2+2x-6y+1=0上有兩點(diǎn)P、Q,滿(mǎn)足關(guān)于直線(xiàn)x+my+4=0對(duì)稱(chēng),又滿(mǎn)足·=0.
(1)求m的值;
(2)求直線(xiàn)PQ的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知一個(gè)圓C和軸相切,圓心在直線(xiàn)上,且在直線(xiàn)上截得的弦長(zhǎng)為,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,圓C:,直線(xiàn):.
(1) 當(dāng)a為何值時(shí),直線(xiàn)與圓C相切;
(2) 當(dāng)直線(xiàn)與圓C相交于A、B兩點(diǎn),且時(shí),求直線(xiàn)的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com