【題目】已知函數(shù)在處有極值10.
(Ⅰ)求實(shí)數(shù), 的值;
(Ⅱ)設(shè)時(shí),討論函數(shù)在區(qū)間上的單調(diào)性.
【答案】(Ⅰ), ; (Ⅱ)見(jiàn)解析.
【解析】試題分析:(Ⅰ) , 在處有極值10,所以且;
(Ⅱ)求導(dǎo)得函數(shù)在R上的單調(diào)性,再討論函數(shù)定義域在哪個(gè)區(qū)間即可.
試題解析:
(Ⅰ)定義域?yàn)?/span>, ,
∵在處有極值10.
∴且.
即
解得: 或
當(dāng), 時(shí), ,
當(dāng), 時(shí), ,
∴在處處有極值10時(shí), , .
(Ⅱ)由(Ⅰ)可知,其單調(diào)性和極值分布情況如表:
1 | |||||
+ | 0 | - | 0 | + | |
增 | 極大 | 減 | 極小 | 增 |
①當(dāng)且,即時(shí), 在區(qū)間上單調(diào)遞減;
②當(dāng) ,即時(shí), 在區(qū)間上的單調(diào)遞減,在區(qū)間上單調(diào)遞增;
③當(dāng)時(shí), 在區(qū)間上單調(diào)遞增.
綜上所述,當(dāng)時(shí)函數(shù)在區(qū)間上的單調(diào)性為:
時(shí),單調(diào)遞減;
時(shí), 在上單調(diào)遞減,在上單調(diào)遞增;
時(shí), 在上單調(diào)遞增.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱柱ABCD﹣A1B1C1D1中,底面ABCD是邊長(zhǎng)為3的正方形,側(cè)棱AA1長(zhǎng)為4,且AA1與A1B1 , A1D1的夾角都是60°,則AC1的長(zhǎng)等于( )
A.10
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|lgx|.若a≠b且,f(a)=f(b),則a+b的取值范圍是( )
A.(1,+∞)
B.[1,+∞)
C.(2,+∞)
D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)請(qǐng)根據(jù)對(duì)數(shù)函數(shù)來(lái)指出函數(shù)的基本性質(zhì)(結(jié)論不要求證明),并畫出圖像;
(2)拉普拉斯稱贊對(duì)數(shù)是一項(xiàng)“使天文學(xué)家壽命倍増”的發(fā)明.對(duì)數(shù)可以將大數(shù)之間的乘除運(yùn)算簡(jiǎn)化為加減運(yùn)算,請(qǐng)證明: ;
(3)2017年5月23日至27日,圍棋世界冠軍柯潔與DeepMind公司開(kāi)發(fā)的程序“AlphaGo”進(jìn)行三局人機(jī)對(duì)弈,以復(fù)雜的圍棋來(lái)測(cè)試人工智能.圍棋復(fù)雜度的上限約為,而根據(jù)有關(guān)資料,可觀測(cè)宇宙中普通物質(zhì)的原子總數(shù)約為.甲、乙兩個(gè)同學(xué)都估算了的近似值,甲認(rèn)為是,乙認(rèn)為是.現(xiàn)有兩種定義:
①若實(shí)數(shù)滿足,則稱比接近;
②若實(shí)數(shù),且,滿足,則稱比接近;請(qǐng)你任選取其中一種定義來(lái)判斷哪個(gè)同學(xué)的近似值更接近,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)(x∈R)是偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x.
(1)求f(x)的解析式;
(2)若不等式f(x)≥mx在1≤x≤2時(shí)都成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)F(x)=f(x)+f(﹣x)在區(qū)間 是單調(diào)遞減函數(shù),將F(x)的圖象按向量 平移后得到函數(shù)G(x)的圖象,則G(x)的一個(gè)單調(diào)遞增區(qū)間是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為3的正方體ABCD﹣A1B1C1D1中,A1E=CF=1.
(1)求兩條異面直線AC1與D1E所成角的余弦值;
(2)求直線AC1與平面BED1F所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),且f(x)+g(x)=3x .
(1)求 f(x),g(x);
(2)若對(duì)于任意實(shí)數(shù)t∈[0,1],不等式f(2t)+ag(t)<0恒成立,求實(shí)數(shù)a的取值范圍;
(3)若存在m∈[﹣2,﹣1],使得不等式af(m)+g(2m)<0成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)f(x)=2sin(3x﹣ ),有下列命題:①其表達(dá)式可改寫為y=2cos(3x﹣ );②y=f(x)的最小正周期為 ;③y=f(x)在區(qū)間( , )上是增函數(shù);④將函數(shù)y=2sin3x的圖象上所有點(diǎn)向左平行移動(dòng) 個(gè)單位長(zhǎng)度就得到函數(shù)y=f(x)的圖象.其中正確的命題的序號(hào)是(注:將你認(rèn)為正確的命題序號(hào)都填上).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com