年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(2009天津卷理)(本小題滿分14分)
已知等差數(shù)列{}的公差為d(d0),等比數(shù)列{}的公比為q(q>1)。設(shè)=+…..+ ,=-+…..+(-1 ,n
若== 1,d=2,q=3,求 的值;
若=1,證明(1-q)-(1+q)=,n;
(Ⅲ) 若正數(shù)n滿足2nq,設(shè)的兩個不同的排列, , 證明。
本小題主要考查等差數(shù)列的通項公式、等比數(shù)列的通項公式與前n項和公式等基礎(chǔ)知識,考查運(yùn)算能力,推理論證能力及綜合分析和解決問題的能力的能力,滿分14分。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009天津卷理)(本小題滿分14分)
已知等差數(shù)列{}的公差為d(d0),等比數(shù)列{}的公比為q(q>1)。設(shè)=+…..+ ,=-+…..+(-1 ,n
若== 1,d=2,q=3,求 的值;
若=1,證明(1-q)-(1+q)=,n;
(Ⅲ) 若正數(shù)n滿足2nq,設(shè)的兩個不同的排列, , 證明。
本小題主要考查等差數(shù)列的通項公式、等比數(shù)列的通項公式與前n項和公式等基礎(chǔ)知識,考查運(yùn)算能力,推理論證能力及綜合分析和解決問題的能力的能力,滿分14分。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com