【題目】已知正項數(shù)列{an}的首項a1=1,且(n+1)a +anan+1﹣na =0對n∈N*都成立.
(1)求{an}的通項公式;
(2)記bn=a2n﹣1a2n+1 , 數(shù)列{bn}的前n項和為Tn , 證明:Tn< .
【答案】
(1)解:(n+1)a +anan+1﹣na =0對n∈N*都成立.
∴[(n+1)an+1﹣nan](an+1+an)=0,∵an+1+an>0,
∴(n+1)an+1﹣nan=0,即 = .
∴an= … = … 1=
(2)解:證明:bn=a2n﹣1a2n+1= = .
數(shù)列{bn}的前n項和為Tn= +…+
= .
即Tn< .
【解析】(1)(n+1)a +anan+1﹣na =0對n∈N*都成立.分解因式可得:[(n+1)an+1﹣nan](an+1+an)=0,由an+1+an>0,可得(n+1)an+1﹣nan=0,即 = .利用“累乘求積”方法即可得出.(2)bn=a2n﹣1a2n+1= = .利用裂項求和方法、數(shù)列的單調(diào)性即可得出.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),( )是偶函數(shù).
(1)求的值;
(2)設(shè)函數(shù),其中.若函數(shù)與的圖象有且只有一個交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+ (a>1),
(1)判斷函數(shù)f(x)在(-1,+∞)上的單調(diào)性,并證明你的判斷;
(2)若a=3,求方程f(x)=0的正根(精確到0.1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+2x﹣2﹣a(a≤0),
(1)若a=﹣1,求函數(shù)的零點;
(2)若函數(shù)在區(qū)間(0,1]上恰有一個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)h(x)=ax3+bx2+cx+d(a≠0)圖象的對稱中心為M(x0 , h(x0)),記函數(shù)h(x)的導(dǎo)函數(shù)為g(x),則有g(shù)′(x0)=0,設(shè)函數(shù)f(x)=x3﹣3x2+2,則f( )+f( )+…+f( )+f( )= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+ ax2﹣2x存在單調(diào)遞減區(qū)間,則實數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某購物網(wǎng)站在2017年11月開展“全部6折”促銷活動,在11日當(dāng)天購物還可以再享受“每張訂單金額(6折后〕滿300元時可減免100元”.小淘在11日當(dāng)天欲購入原價48元(單價)的商品共42件,為使花錢總數(shù)最少,他最少需要下的訂單張數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com