【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎。抽獎規(guī)則如下:1、抽獎方案有以下兩種:方案,從裝有1個紅球、2個白球(僅顏色不同)的甲袋中隨機摸出1個球,若是紅球,則獲得獎金15元,否則,沒有獎金,兌獎后將摸出的球放回甲袋中;方案,從裝有2個紅、1個白球(僅顏色不同)的乙袋中隨機摸出1個球,若是紅球,則獲得獎金10元,否則,沒有獎金,兌獎后將摸出的球放回乙袋中。

抽獎條件是:顧客購買商品的金額滿100元,可根據(jù)方案抽獎一;滿足150元,可根據(jù)方案抽獎(例如某顧客購買商品的金額為310元,則該顧客采用的抽獎方式可以有以下三種,根據(jù)方案抽獎三次或方案抽獎兩次或方案各抽獎一次)。已知顧客在該商場購買商品的金額為250元。

(1)若顧客只選擇根據(jù)方案進行抽獎,求其所獲獎金為15元的概率;

(2)當若顧客采用每種抽獎方式的可能性都相等,求其最有可能獲得的獎金數(shù)(0元除外)。

【答案】(1) ;(2)15元.

【解析】試題分析:

(1)由題意列出所有可能的事件,然后結合古典概型計算公式可得所獲獎金為15元的概率是;

(2)結合所給的兩種方案分類討論可得其最有可能獲得的獎金數(shù)是15.

試題解析:

1)記甲袋中紅球是,白球分別為

由題意得顧客可以從甲袋中先后摸出2個球,其所有等可能出現(xiàn)的結果為

9種,

其中結果可獲獎金15元,所以顧客所獲獎金為15元的概率為.

2)由題意的顧客可以根據(jù)方案抽獎兩次或根據(jù)方案各抽獎一次。由(1)知顧客根據(jù)方案抽獎兩次所獲獎金及其概率如表1

記乙袋中紅球分別是,白球

則顧客根據(jù)方案各抽獎一次的所有等可能出現(xiàn)的結果為

9

其中結果可獲獎金25元。結果可獲獎金15元,

可獲獎金10元,其余可獲獎金0元,所以顧客根據(jù)方案各抽獎一次所獲獎金及其概率如表2

由表1,表2可知顧客最有可能獲得的獎金數(shù)為15.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】有4位同學在同一天的上、下午參加“身高與體重”、“立定跳遠”、“肺活量”、“握力”、“臺階”五個項目的測試,每位同學上、下午各測試一個項目,且不重復.若上午不測“握力”項目,下午不測“臺階”項目,其余項目上、下午都各測試一人,則不同的安排方式共有__________種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓過點, .

求:(1)周長最小的圓的方程;

2)圓心在直線上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(x)+f(2﹣x)=2,當x∈(0,1]時,f(x)=x2 , 當x∈(﹣1,0]時, ,若定義在(﹣1,3)上的函數(shù)g(x)=f(x)﹣t(x+1)有三個不同的零點,則實數(shù)t的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為評選“全國衛(wèi)生城市”,從200名志愿者中隨機抽取40名志愿者參加街道衛(wèi)生監(jiān)督活動,經(jīng)過統(tǒng)計這些志愿者的年齡介于25歲和55歲之間,為方便安排任務,將所有志愿者按年齡從小到大分成六組,依次為,如圖是按照上述分組方法得到的頻率分布直方圖的一部分,已知第四組的人數(shù)為4人.

(1)求第五組的頻率并估計200名志愿者中年齡在40歲以上(含40歲)的人數(shù);

(2)若從年齡位于第四組和第六組的志愿者中隨機抽取兩名,記他們的年齡分別為,事件,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;

(2)計算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人玩數(shù)字游戲,先由甲任想一個數(shù)字記為a,再由乙猜甲剛才想的數(shù)字,把乙想的數(shù)字記為b,且a,b∈{1,2,3,4,5,6},記ξ=|a﹣b|.
(1)求ξ=1的概率;
(2)若ξ≤1,則稱“甲乙心有靈犀”,求“甲乙心有靈犀”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四面體中, 底面的重心, 為線段上一點,且平面,則直線所成角的余弦值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知,且.

(1)求的最小值;

(2)求的最大值.

查看答案和解析>>

同步練習冊答案