已知平面直角坐標(biāo)系xoy中O是坐標(biāo)原點(diǎn),,圓C是△OAB的外接圓,過(guò)點(diǎn)(2,6)的直線(xiàn)l被圓所截得的弦長(zhǎng)為
(1)求圓C的方程及直線(xiàn)l的方程;
(2)設(shè)圓N的方程(x-4-7cosθ)2+(y-7sinθ)2=1,(θ∈R),過(guò)圓N上任意一點(diǎn)P作圓C的兩條切線(xiàn)PE,PF,切點(diǎn)為E,F(xiàn),求的最大值.
【答案】分析:(1)直角三角形斜邊的中點(diǎn)就是該直角三角形外接圓的圓心,半徑r、弦長(zhǎng)l、弦心距d三者滿(mǎn)足:r2=d2+
(2)結(jié)合圖象,利用2個(gè)向量的數(shù)量積的定義,用∠ECF的一半α表示則的結(jié)果,由圓的幾何性質(zhì)|PC|≥|NC|-1,可得cosα的最大值,進(jìn)而得的最大值.
解答:解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181038466254895/SYS201310241810384662548021_DA/3.png">,所以△OAB為以O(shè)B為斜邊的直角三角形,
所以圓C:(x-4)2+y2=16
①斜率不存在時(shí),l:x=2被圓截得弦長(zhǎng)為,所以l:x=2適合
②斜率存在時(shí),設(shè)l:y-6=k(x-2)即kx-y+6-2k=0
因?yàn)楸粓A截得弦長(zhǎng)為,所以圓心到直線(xiàn)距離為2,所以


綜上,l:x=2或4x+3y-26=0
(2)解:設(shè)∠ECF=2a,

在Rt△PCE中,,由圓的幾何性質(zhì)得|PC|≥|NC|-1=7-1=6,
所以,
由此可得,則的最大值為
點(diǎn)評(píng):本題屬于應(yīng)用直線(xiàn)和園的位置關(guān)系,并結(jié)合平面向量數(shù)量積的預(yù)算,求最值問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系xOy上的區(qū)域D由不等式組
0≤x≤
2
y≤2
x≤
2
y
給定,若M(x,y)為D上的動(dòng)點(diǎn),點(diǎn)A的坐標(biāo)為(
2
,1)
,
(1)求區(qū)域D的面積
(2)設(shè)z=
2
x+y
,求z的取值范圍;
(3)若M(x,y)為D上的動(dòng)點(diǎn),試求(x-1)2+y2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系中,A(cosx,sinx),B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2
(Ⅰ)求f(x)的最小正周期和對(duì)稱(chēng)中心;
(Ⅱ)求f(x)在區(qū)間[0,2π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系中,角α的始邊與x正半軸重合,終邊與單位圓(圓心是原點(diǎn),半徑為1的圓)交于點(diǎn)P.若角α在第
一象限,且tanα=
4
3
.將角α終邊逆時(shí)針旋轉(zhuǎn)
π
3
大小的角后與單位圓交于點(diǎn)Q,則點(diǎn)Q的坐標(biāo)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•宜賓二模)已知平面直角坐標(biāo)系xoy上的區(qū)域D由不等式組
x+y≥2
x≤1
y≤2
給定,若M(x,y)為D上的動(dòng)點(diǎn),A的坐標(biāo)為(-1,1),則
OA
OM
的取值范圍是
[0,2]
[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系xOy上的定點(diǎn)M(2,0)和定直線(xiàn)l:x=-
3
2
,動(dòng)點(diǎn)P在直線(xiàn)l上的射影為Q,且4(
PQ
+
PM
)•(
PQ
-
PM
)+2
PM
OM
=1

(1)求點(diǎn)P的軌跡C的方程;
(2)設(shè)A、B是軌跡C上兩個(gè)動(dòng)點(diǎn),
MA
MB
,λ∈R,∠AOB=θ,請(qǐng)把△AOB的面積S表示為θ的函數(shù),并求此函數(shù)的定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案