已知
在區(qū)間
上是增函數(shù),在區(qū)間
和
上是減函數(shù),且
(1)求函數(shù)
的解析式.
(2)若在區(qū)間
上恒有
,求實數(shù)
的取值范圍.
(1)
;(2)
試題分析:(1)
由已知得:
和
是
的兩根
即
解得
又由
得:
(2)由
得:
即:
或
又
在區(qū)間
上恒成立,
點評:導數(shù)本身是個解決問題的工具,是高考必考內(nèi)容之一,高考往往結合函數(shù)甚至是實際問題考查導數(shù)的應用,求單調(diào)、最值、完成證明等,請注意歸納常規(guī)方法和常見注意點.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:填空題
曲線
在點
處的切線方程是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
,則
( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)
的導數(shù)是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知a為實數(shù),
(1)求導數(shù)
;
(2)若
,求
在[-2,2] 上的最大值和最小值;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知函數(shù)
,則函數(shù)
在
處的切線方程是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
,函數(shù)
的導函數(shù)是
,且
是奇函數(shù),則
的值為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
。
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)求在曲線
上一點
的切線方程。
查看答案和解析>>