計(jì)算:
(1)log2.56.25+lg
1
100
+ln(e
e
)+log2(log216);
(2)解含x的不等式:(
1
4
)x-
3
2x
+2<0.
考點(diǎn):一元二次不等式的解法,對數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)直接利用對數(shù)的運(yùn)算性質(zhì)化簡求值;
(2)把原不等式看作關(guān)于(
1
2
)x
的一元二次不等式,求解后再求解指數(shù)不等式得答案.
解答: 解:(1)log2.56.25+lg
1
100
+ln(e
e
)+log2(log216)
=log2.5(2.5)2+lg10-2+lne
3
2
+log24

=2-2+
3
2
+2
=
7
2
;
(2)由(
1
4
)x-
3
2x
+2<0,得
(
1
2
)x-3•(
1
2
)x+2<0
,
解得:1<(
1
2
)x<2
,即-1<x<0.
∴不等式:(
1
4
)x-
3
2x
+2<0的解集為(-1,0).
點(diǎn)評:本題考查了指數(shù)不等式和對數(shù)不等式的運(yùn)算性質(zhì),考查了一元二次不等式的解法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,B=30°,AB=6,∠ADC=45°,點(diǎn)D在BC邊上,且CD=1,則AC的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

公差不為0的等差數(shù)列{an}中,a1=3,a5=7.
(Ⅰ)求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)若數(shù)列{bn}中,bn=2 an-2,求數(shù)列{bn}前n項(xiàng)的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

奇函數(shù)f(x)滿足f(x+3)=f(x),且f(1)=2,則f(5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比q=-
1
3
,則
a1+a3+a5+a7
a2+a4+a6+a8
等于( 。
A、-3
B、-
1
3
C、3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)奇函數(shù)f(x)在R上為減函數(shù),則不等式f(x)+f(-1)>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-log2x(x>0)
1-x2(x≤0)
,則不等式f(x)>0的解集為( 。
A、.{x|0<x<1}
B、{x|-1<x≤0}
C、{x|x>-1}
D、{x|-1<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
1+x2

(1)求證:函數(shù)f(x)是偶函數(shù);
(2)利用函數(shù)單調(diào)性定義證明函數(shù)f(x)在(-∞,0]上是增函數(shù);
(3)求函數(shù)f(x)=
1
1+x2
在[-3,2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,與函數(shù)y=x相同的函數(shù)是( 。
A、y=
x2
x
B、y=(
x3
)
2
3
C、y=lg10x
D、y=2log2x

查看答案和解析>>

同步練習(xí)冊答案