精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=x2+lnx.
(I)已知α是方程xf(x)-x3=2009的根,β是方程xex=2009的根,求α•β的值.
(II)求證:在區(qū)間(1,+∞)上,函數f(x)圖象在函數g(x)=x3圖象的下方;
(Ⅲ)設函數h(x)=f′(x),求證:[h(x)]n+2≥h(xn)+2n
【答案】分析:(Ⅰ)將“方程xf(x)-x3=2009的根”轉化為:“函數y=lnx與y=”的交點,將“方程xex=2009的根”轉化為:“函數y=ex與y=”的交點;最由KAB=-1,求得α•β
(Ⅱ)構造“函數F(x)=x2+lnx-x3”,將問題轉化為:“F(x)≤0恒成立”,再用導數法,研究其單調性,求得其最大值即可.
(Ⅲ)當n=1時,左邊=x++2,右邊=x++2,不等式成立;當n≥2時,由[h(x)]n-h(xn)=(x+n-(xn+
=[Cn1(xn-2+)+Cn2(xn-4+)+…+Cnn-1+xn-2)]作差比較.
解答:解:(Ⅰ)根據題意:易知y=lnx與y=的交點為A(α,),
y=ex與y=的交點為B(β,);由KAB=-1,易知α•β=2009(4分)

(Ⅱ)設F(x)=x2+lnx-x3,則F′(x)=x+-2x2=
∵x>1,F(xiàn)′(x)<0∴F(x)在區(qū)間(1,+∝)上是減函數又∵F(1)=-<0
x2+lnx-x3<0,即x2+lnx<x3,x∈(1,+∞)
∴在區(qū)間(1,+∞)上,函數f(x)圖象在函數g(x)=x3圖象的下方(9分)

(Ⅲ)當n=1時,左邊=x++2,右邊=x++2,不等式成立;
當n≥2時,[h(x)]n-h(xn)=(x+n-(xn+
=[Cn1(xn-2+)+Cn2(xn-4+)+…+Cnn-1+xn-2)]
由已知,x>0
∴[h(x)]n-ln(xn)≥Cn1+Cn2+…+Cnn-1=2n-2
∴[h(x)]n+2≥h(xn)+2n.(15分)
點評:本題主要考查函數與方程的綜合運用,主要涉及了方程根的問題轉化為函數圖象的交點,不等式恒成立問題,轉化為函數的最值問題,比較法證明不等式等.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案