已知a,b,c∈R,b<0則“b2=ac”是“a,b,c成等比數(shù)列”的( 。
分析:先說(shuō)明必要性,由a、b、c成等比數(shù)列,根據(jù)等比數(shù)列的性質(zhì)可得b2=ac;再說(shuō)明充分性,由a,b,c∈R,b<0,得到a,b,c不為0,若b2=ac,則a、b、c成等比數(shù)列,從而得到正確的選項(xiàng).
解答:解:若a、b、c成等比數(shù)列,
根據(jù)等比數(shù)列的性質(zhì)可得:b2=ac,
∴“b2=ac”是“a,b,c成等比數(shù)列”的必要條件;
∵a,b,c∈R,b<0,∴a,b,c≠0,
若b2=ac,則a、b、c成等比數(shù)列,
∴“b2=ac”是“a,b,c成等比數(shù)列”的充分條件.
∴“b2=ac”是“a、b、c成等比數(shù)列”的充要條件.
故選C
點(diǎn)評(píng):本題考查了等比數(shù)列的質(zhì),以及必要條件、充分條件、充要條件的判斷.當(dāng)a,b,c成等比數(shù)列時(shí),一定要考慮a,b,c都等于0的特殊情況,而已知a,b,c∈R,b<0,可得出a,b,c都不為0,故本題“b2=ac”是“a,b,c成等比數(shù)列”的充要條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

50、已知a,b,c∈R,證明:a2+4b2+9c2≥2ab+3ac+6bc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明:
(1)已知x,y都是正實(shí)數(shù),求證:x3+y3≥x2y+xy2
(2)已知a,b,c∈R+,且a+b+c=1,求證:a2+b2+c2 ≥ 
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c∈R+且滿足a+2b+3c=1,則
1
a
+
1
2b
+
1
3c
的最小值為
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知a,b,c∈R,且a+b+c=1,求證:a2+b2+c2
1
3
;
(2)a,b,c為互不相等的正數(shù),且abc=1,求證:
1
a
+
1
b
+
1
c
a
+
b
+
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c∈R,且a>b,那么下列不等式中成立的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案