精英家教網 > 高中數學 > 題目詳情

AB是圓O的直徑,D為圓O上一點,過D作圓O的切線交AB延長線于點C,若DA=DC,求證:AB=2BC.

見解析

解析證明 連接OD,則:OD⊥DC,

又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,∠DOC=∠DAO+∠ODA=2∠DCO,所以∠DCO=30°,∠DOC=60°,所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,圓與圓交于兩點,以為切點作兩圓的切線分別交圓和圓兩點,延長交圓于點,延長交圓于點.已知

(1)求的長;
(2)求

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知直角坐標平面上點Q(2,0)和圓C:x2+y2=1,動點M到圓C的切線長與|MQ|的比等于.求動點M的軌跡方程,并說明它表示什么.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓的圓心與點關于直線對稱,直線與圓相交于兩點,且,求圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知☉O:x2+y2=1和定點A(2,1),由☉O外一點P(a,b)向☉O引切線PQ,切點為Q,且滿足|PQ|=|PA|.

(1)求實數a,b間滿足的等量關系.
(2)求線段PQ長的最小值.
(3)若以P為圓心所作的☉P與☉O有公共點,試求半徑取最小值時☉P的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

求圓心在拋物線x2=4y上,且與直線x+2y+1=0相切的面積最小的圓
的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知曲線C上的動點P()滿足到定點A(-1,0)的距離與到定點B(1,0)距離之比為
(1)求曲線C的方程。
(2)過點M(1,2)的直線與曲線C交于兩點M、N,若|MN|=4,求直線的方程。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的離心率為,且經過點,圓的直徑為的長軸.如圖,是橢圓短軸端點,動直線過點且與圓交于兩點,垂直于交橢圓于點.

(1)求橢圓的方程;
(2)求 面積的最大值,并求此時直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓的圓心與點關于直線對稱,直線與圓相交于、兩點,且,求圓的方程.

查看答案和解析>>

同步練習冊答案