精英家教網 > 高中數學 > 題目詳情
17.如圖,已知在直三棱柱ABC-A1B1C1中,AB=AA1=2,二面角A-C1C-B的大小為$\frac{π}{3}$,點D線段BC的中點.
(1)若AB=AC,求證:平面BB1C1C⊥平面AB1D;
(2)當三棱柱ABC-A1B1C1的體積最大時,求直線A1D與平面AB1D所成角θ的正弦值.

分析 (1)若AB=AC,證明:AD⊥平面BB1C1C,即可證明平面BB1C1C⊥平面AB1D;
(2)當三棱柱ABC-A1B1C1的底面積最大時,體積最大,利用等體積方法求出A1到平面AB1D的距離,即可求直線A1D與平面AB1D所成角θ的正弦值.

解答 (1)證明:由題意,∠ACB=$\frac{π}{3}$,AB=AC,
∴△ABC為正三角形,∴AD⊥BC,AD⊥CC1,
∴AD⊥平面BB1C1C,
∵AD?平面AB1D,
∴平面BB1C1C⊥平面AB1D;
(2)解:當三棱柱ABC-A1B1C1的底面積最大時,體積最大,
∵4=AB2=$A{C}^{2}+B{C}^{2}-2AC•BC•\frac{1}{2}$≥AC•BC-AC•BC=AC•BC,
∴當AC=BC,三角形ABC為正三角形時面積取最大值,
設A1到平面AB1D的距離為d,則由等體積可得$\frac{1}{3}{S}_{△A{B}_{1}D}•d=\frac{1}{3}•\frac{1}{2}•AD•D{B}_{1}•d=\frac{\sqrt{3}}{3}$,
∴d=$\frac{2}{\sqrt{5}}$,
∴sinθ=$\fracdxtfx9n{{A}_{1}D}=\frac{\frac{2}{\sqrt{5}}}{\sqrt{7}}$=$\frac{2\sqrt{35}}{35}$.

點評 本題考查線面、面面垂直的證明,考查線面角,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

7.動圓M過點(3,2)且與直線y=1相切,則動圓圓心M的軌跡方程為x2-6x-2y+12=0.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.2001年至2013年北京市電影放映場次的情況如圖所示.下列函數模型中,最不合適近似描述這13年間電影放映場次逐年變化規(guī)律的是( 。
A.y=ax2+bx+cB.y=aex+bC.y=aax+bD.y=alnx+b

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.已知三棱錐A-BCD的四個頂點A、B、C、D都在球O的表面上,AC⊥平面BCD,BC⊥CD,且AC=$\sqrt{3}$,BC=2,CD=$\sqrt{5}$,則球O的表面積為12π.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.等比數列中,首項a1=2,a4=16.
(1)求數列{an}的通項公式.
(2)設數列bn=lgan,證明數列{bn}是等差數列并求前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知sinα+cosα=$\frac{{\sqrt{2}}}{3}$($\frac{π}{2}$<α<π),求下列各式的值:
(1)sinα-cosα;
(2)sin2($\frac{π}{2}$-α)-cos2($\frac{π}{2}$+α).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.已知函數f(x)=ex-(x+1)2(e為2.71828…),則f(x)的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.今年“五一”期間,某公園舉行免費游園活動,免費開放一天,早晨6時30分有2人進入公園,接下來的第一個30分鐘內有4人進去1人出來,第二個30分鐘內有8人進去2人出來,第三個30分鐘內有16人進去3人出來,第四個30分鐘內有32人進去4人出來…按照這種規(guī)律進行下去,到上午11時公園內的人數是( 。
A.212-57B.211-47C.210-38D.29-30

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.化簡:
(1)$\frac{si{n}^{2}35°-\frac{1}{2}}{cos10°cos80°}$        
(2)($\frac{1}{tan\frac{α}{2}}$-tan$\frac{α}{2}$)•$\frac{1-cos2α}{sin2α}$.

查看答案和解析>>

同步練習冊答案