下列直線中,與直線x-2y+1=0垂直的是( 。
A、2x-y-3=0
B、x-2y+3=0
C、2x+y+5=0
D、x+2y-5=0
考點(diǎn):直線的一般式方程與直線的垂直關(guān)系
專(zhuān)題:直線與圓
分析:分別求出五條直線的斜率,由斜率互為負(fù)倒數(shù)求得答案.
解答: 解:直線直線x-2y+1=0的斜率為
1
2
,
而直線2x-y-3=0的斜率為2,
x-2y+3=0的斜率為
1
2
,
2x+y+5=0的斜率為-2,
x+2y-5=0的斜率為-
1
2

∴與直線x-2y+1=0垂直的是2x+y+5=0.
故選:C.
點(diǎn)評(píng):本題考查了直線的一般式方程與直線垂直的關(guān)系,考查了兩直線垂直與斜率間的關(guān)系,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩點(diǎn)A(1,0),B(-1,
3
),O為坐標(biāo)原點(diǎn),點(diǎn)C在第二象限,且∠AOC=135°,設(shè)
OC
=-
OA
OB
(λ∈R),則實(shí)數(shù)λ等于( 。
A、
3
+1
2
B、
3
-1
2
C、
2
-1
2
D、
2
+1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosθ=-
1
2
,θ為第三象限角,則sin(
π
3
)=
 
,cos(
π
3
)=
 
,tan(
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中是假命題的是( 。
A、?α、β∈R,使sin(α+β)=sinα+sinβ
B、?a>0,函數(shù)f(x)=ln2x+lnx-a有零點(diǎn)
C、?ϕ∈R,函數(shù)f(x)=sin(2x+ϕ)都不是偶函數(shù)
D、?m∈R,使f(x)=(m-1)•xm2-4m+3是冪函數(shù),且在(0,+∞)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,光線從點(diǎn)A(2,1)出發(fā),到x軸上的點(diǎn) B后,被x軸反射到y(tǒng)軸上的
C點(diǎn),又被y軸反射,這時(shí)反射線恰好經(jīng)過(guò)點(diǎn)D(1,2).
(1)求直線BC的方程;
(2)求線段BC的中垂線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2sin(
1
2
x-
π
6
)的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一個(gè)正六邊形的六個(gè)區(qū)域栽種觀賞植物(如圖),要求同一塊中種同一種植物,相鄰的兩塊種不同的植物.
(1)現(xiàn)有2種不同的植物可供選擇,則有種栽
 
種方案;
(2)現(xiàn)有4種不同的植物可供選擇,則有
 
種栽種方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知,正項(xiàng)數(shù)列{an}是首項(xiàng)為2的等比數(shù)列,且a2+a3=24.
(1)求{an}的通項(xiàng)公式.
(2)設(shè)bn=
2n
3an
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列角中,終邊在y軸正半軸上的是( 。
A、
π
4
B、
π
2
C、π
D、
2

查看答案和解析>>

同步練習(xí)冊(cè)答案