(本小題滿分12分)
如圖,直平行六面體ABCD-A1B1C1D1的高為3,
底面是邊長(zhǎng)為4, 且∠BAD=60°的菱形,AC∩
BD=O,A1C1∩B1D1=O1,E是線段AO1上一點(diǎn).
(Ⅰ)求點(diǎn)A到平面O1BC的距離;
(Ⅱ)當(dāng)AE為何值時(shí),二面角E-BC-D的大小為.

(1)
(2) AE=AO1=
解:(Ⅰ) 設(shè)A到平面O1BC距離為d.
,得 .
由直四棱柱ABCD—A1B1C1D1的高為3,底面是邊長(zhǎng)為4且∠BAD=的菱形.
∴|O1B1|=|A1B1|="2.   " ∴.
.
由余弦定理得.
.
…………………6分
(Ⅱ)過(guò)E作垂直AC,垂足為,過(guò),垂足為M,連結(jié)EM .
由三垂線定理得EM⊥CB,  ∴為二面角E—BC—D的平面角.
,設(shè)M=x,則 

此時(shí)與OO1重合,∴AE=AO1=.……………………………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知棱長(zhǎng)為4的正方體中,為側(cè)面的中心,為棱的中點(diǎn),試計(jì)算
(1)
(2)求證;
(3)求與面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,底面, .底面為梯形,
,.,點(diǎn)在棱上,且
(1)求證:平面;
(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中.

(1)求證:AC⊥平面B1BDD1;
(2)求三棱錐B-ACB1體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,動(dòng)點(diǎn)P在正方體ABCD—A1B1C1D1的對(duì)角線BD1上,過(guò)點(diǎn)P作垂直于平面BB1D1D的直線,與正方體表面交于M、N,設(shè)BP=x,MN=y,則函數(shù)的圖象大致是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

本小題滿分12分)
如圖,在六面體中,四邊形ABCD是邊長(zhǎng)為2的正方形,四邊形是邊長(zhǎng)為1的正方形,平面,平面ABCD,DD1=2。

(1)求證:與AC共面,與BD共面.   
(2)求證:平面
(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)
如圖,在正方體ABCD—A1B1C1D1中,M、N、G
分別是A1A,D1C,AD的中點(diǎn).求證:(Ⅰ)MN//平面ABCD;(Ⅱ)MN⊥平面B1BG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知三個(gè)平面,若,且相交但不垂直,分別為內(nèi)的直線,則(▲)              
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若圓錐的表面積為平方米,且它的側(cè)面展開圖是一個(gè)半圓,則這個(gè)圓錐的底面的直徑為           

查看答案和解析>>

同步練習(xí)冊(cè)答案