已知圓,過圓內(nèi)定點(diǎn)P(2,1)作兩條相互垂直的弦AC和BD,那么四邊形ABCD面積最大值為(    )

A.21            B.           C.            D.42
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知直線l:2
2
x-y+3+8
2
=0
和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長(zhǎng)為2
3

(1)求圓C1的方程;
(2)設(shè)圓C1和x軸相交于A、B兩點(diǎn),點(diǎn)P為圓C1上不同于A、B的任意一點(diǎn),直線PA、PB交y軸于M、N點(diǎn).當(dāng)點(diǎn)P變化時(shí),以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論;
(3)若△RST的頂點(diǎn)R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點(diǎn)R的縱坐標(biāo)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L垂直直線AB.點(diǎn)P是圓O上異于A、B的任意一點(diǎn),直線PA、PB分別交L與M、N點(diǎn).
(Ⅰ)若∠PAB=30°,求以MN為直徑的圓方程;
(Ⅱ)當(dāng)點(diǎn)P變化時(shí),求證:以MN為直徑的圓必過圓O內(nèi)的一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=4內(nèi)一定點(diǎn)M(0,1),經(jīng)M且斜率存在的直線交圓于A(x1,y1)、B(x2,y2)兩點(diǎn),過點(diǎn)A、B分別作圓的切線l1,l2.設(shè)切線l1,l2交于點(diǎn)Q.
(1)設(shè)點(diǎn)P(x0,y0)是圓上的點(diǎn),求證:過P的圓的切線方程是
x
 
0
x+y0y=4

(2)求證Q在一定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系x0y中,已知以O(shè)為圓心的圓與直線l:y=mx+(3-4m)(m∈R)恒有公共點(diǎn),且要求使圓O的面積最。
(1)證明直線過定點(diǎn)M,求出此點(diǎn)的坐標(biāo)及圓O的方程;
(2)已知定點(diǎn)Q(-4,3),直線l與圓O交于M、N兩點(diǎn),試判斷
QM
QN
×tan∠MQN是否有最大值,若存在求出最大值,并求出此時(shí)直線l的方程,若不存在,給出理由.
(3)圓O與x軸相交于A、B兩點(diǎn),圓內(nèi)動(dòng)點(diǎn)P使|
PA
|、|
PO
|、|
PB
|成等比數(shù)列,求
PA
PB
的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案