A. | 0 | B. | -3 | C. | 1 | D. | -1 |
分析 根據(jù)奇函數(shù)的定義域關(guān)于原點對稱,從而得出a=2,再結(jié)合函數(shù)解析式、計算的定義,即可求出g(1)的值.
解答 解:奇函數(shù)定義域關(guān)于原點對稱;
∴a-6=-2a
∴a=2;
∵$g(-1)=\frac{5}{2}$,函數(shù)g(x)=2x-f(x),
∴$\frac{5}{2}$+g(1)=$\frac{1}{2}$-f(-1)+2-f(1),
∵f(x)是定義在[a-6,2a]上的奇函數(shù),
則f(-1)+f(1)=0,
∴g(1)=0,
故選A.
點評 考查奇函數(shù)的定義,奇函數(shù)定義域的對稱性,奇函數(shù)在原點有定義時,原點處的函數(shù)值為0,以及已知函數(shù)求值的方法.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若 m∥n,m⊥α,n⊥β,則α∥β | B. | 若m∥α,α∩β=n,則m∥n | ||
C. | 若m⊥α,α∥β,則m⊥β | D. | 若m⊥α,n⊥β,m⊥n,則α⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
貨物 | 體積(m3/箱) | 重量(50kg/箱) | 利潤(百元/箱) |
甲 | 5 | 2 | 20 |
乙 | 4 | 5 | 10 |
托運限制 | 24 | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | $\frac{4}{3}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m>n | B. | m<n | C. | m=n | D. | m是n的近似值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com