【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問題,為了了解聲音強(qiáng)度(單位:分貝)與聲音能量(單位:)之間的關(guān)系,將測量得到的聲音強(qiáng)度和聲音能量,2,…,10)數(shù)據(jù)作了初步處理,得到如圖散點圖及一些統(tǒng)計量的值.

表中,

(1)根據(jù)散點圖判斷,哪一個適宜作為聲音強(qiáng)度關(guān)于聲音能量的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(jù)表中數(shù)據(jù),求聲音強(qiáng)度關(guān)于聲音能量的回歸方程;

(3)當(dāng)聲音強(qiáng)度大于60分貝時屬于噪音,會產(chǎn)生噪音污染,城市中某點共受到兩個聲源的影響,這兩個聲源的聲音能量分別是,且.已知點的聲音能量等于聲音能量之和.請根據(jù)(1)中的回歸方程,判斷點是否受到噪音污染的干擾,并說明理由.

附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:

,

【答案】(1)見解析;(2);(3)見解析.

【解析】分析:(1)根據(jù)散點圖,可知(2)利用回歸系數(shù)公式先求出D關(guān)于w的回歸方程,再轉(zhuǎn)化為D關(guān)于I的回歸方程;

(3)利用對數(shù)的運算性質(zhì)和基本不等式求出I的最小值,計算的最小值,從而作出判斷

詳解:(1)更適合.

(2)令,先建立關(guān)于的線性回歸方程,

由于,

關(guān)于的線性回歸方程是,即關(guān)于的回歸方程是

(2)點的聲音能量,∵

,

根據(jù)(1)中的回歸方程,點的聲音強(qiáng)度的預(yù)報值

∴點會受到噪聲污染的干擾.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)圖象上所有點的橫坐標(biāo)縮短為原來的,縱坐標(biāo)不變,再向右平移個單位長度,得到函數(shù)的圖象,則下列說法正確的是( )

A. 函數(shù)的一條對稱軸是

B. 函數(shù)的一個對稱中心是

C. 函數(shù)的一條對稱軸是

D. 函數(shù)的一個對稱中心是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面是一幅統(tǒng)計圖,根據(jù)此圖得到的以下說法中正確的是(

A.這幾年生活水平逐年得到提高

B.生活費收入指數(shù)增長最快的一年是2015

C.生活價格指數(shù)上漲速度最快的一年是2016

D.雖然2017年的生活費收入增長緩慢,但生活價格指數(shù)略有降低,因而生活水平有較大的改善

E.2016年生活價格指數(shù)上漲的速度與2017年生活價格指數(shù)下降的速度相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠推出品牌為玉兔的新產(chǎn)品,生產(chǎn)玉兔的固定成本為20000元,每生產(chǎn)一件玉兔需要增加投入100元,根據(jù)統(tǒng)計數(shù)據(jù),總收益P(單位:元)與月產(chǎn)量x(單位:件)滿足(注:總收益=總成本+利潤)

1)請將利潤y(單位:元)表示成關(guān)于月產(chǎn)量x(單位:件)的函數(shù);

2)當(dāng)月產(chǎn)量為多少時,利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表表示的是某款車的車速與剎車距離的關(guān)系,試分別就,三種函數(shù)關(guān)系建立數(shù)學(xué)模型,并探討最佳模擬,根據(jù)最佳模擬求車速為120km/h時的剎車距離.

車速/km/h

10

15

30

40

50

剎車距離/m

4

7

12

18

25

車速/((km/h

60

70

80

90

100

剎車距離/m

34

43

54

66

80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,討論函數(shù)的單調(diào)性;

(2)若不等式對于任意成立,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年北京冬奧會,推廣滑雪運動,某滑雪場開展滑雪促銷活動.該滑雪場的收費標(biāo)準(zhǔn)是:滑雪時間不超過1小時免費,超過1小時的部分每小時收費標(biāo)準(zhǔn)為40元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立地來該滑雪場運動,設(shè)甲、乙不超過1小時離開的概率分別為,;1小時以上且不超過2小時離開的概率分別為,;兩人滑雪時間都不會超過3小時.

(1)求甲、乙兩人所付滑雪費用相同的概率;

(2)設(shè)甲、乙兩人所付的滑雪費用之和為隨機(jī)變量ξ,求ξ的分布列與數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于回歸分析與獨立性檢驗的說法正確的是()

A.回歸分析和獨立性檢驗沒有什么區(qū)別;

B.回歸分析是對兩個變量準(zhǔn)確關(guān)系的分析,而獨立性檢驗是分析兩個變量之間的不確定性關(guān)系;

C.獨立性檢驗可以確定兩個變量之間是否具有某種關(guān)系.

D.回歸分析研究兩個變量之間的相關(guān)關(guān)系,獨立性檢驗是對兩個變量是否具有某種關(guān)系的一種檢驗;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域是(0,+∞),且對任意正實數(shù)x,y都有f(xy)=f(x)+f(y)恒成立,已知f(2)=1,且x>1時,f(x)>0.

(1)求f()的值;

(2)判斷y=f(x)在(0,+∞)上的單調(diào)性并給出證明;

(3)解不等式f(2x)>f(8x-6)-1.

查看答案和解析>>

同步練習(xí)冊答案