如圖,四棱錐中,側(cè)面是邊長為2的正三角形,且與底面垂直,底面的菱形,的中點(diǎn).

(Ⅰ)求與底面所成角的大小;

(Ⅱ)求證:平面;(Ⅲ)求二面角的余弦值.

 

【答案】

(Ⅰ) 45°; (Ⅱ)參考解析; (Ⅲ) -

【解析】

試題分析:(Ⅰ) 由于平面PDC垂直于平面AC,并且三角形PDC是等邊三角形.所以通過做DC邊上的高PO.即可得直線與底面所成角為∠PAO.通過底面AC是菱形可求得AO,所以通過解直角三角形PAO即可求得∠PAO 的大小.即為結(jié)論.

(Ⅱ) 通過建立空間坐標(biāo)系,寫出相關(guān)點(diǎn)A,P,D,B,C,M的坐標(biāo).計算出向量PA,向量DM,向量DC.通過向量PA與向量DM的數(shù)量積為0可得這兩條直線垂直.同理可以證明PA垂直于DC.從而可得直線PA垂直于平面CDM.即通過向量知識證得線面垂直.

(Ⅲ)求二面角的余弦值通過求出平面DCM和平面BCM的法向量.再求兩法向量的夾角的余弦值的絕對值,再根據(jù)圖形判斷正負(fù)即可.

試題解析:(I)取DC的中點(diǎn)O,由ΔPDC是正三角形,有PO⊥DC.

又∵平面PDC⊥底面ABCD,∴PO⊥平面ABCD于O.連結(jié)OA,則OA是PA在底面上的射影.

∴∠PAO就是PA與底面所成角.∵∠ADC=60°,由已知ΔPCD和ΔACD是全等的正三角形,從而求得OA=OP=.∴∠PAO=45°.∴PA與底面ABCD可成角的大小為45°.

(II)由底面ABCD為菱形且∠ADC=60°,DC=2,DO=1,有OA⊥DC.建立空間直角坐標(biāo)系如圖,則,

由M為PB中點(diǎn),

.∴

.∴,

∴PA⊥DM,PA⊥DC.   ∴PA⊥平面DMC.

(III).令平面BMC的法向量,

,從而x+z=0;  ……①,  ,從而. ……②

由①、②,取x=−1,則.   ∴可取

由(II)知平面CDM的法向量可取,

.∴所求二面角的余弦值為-.…13分

考點(diǎn):1.線面所成的角.2.空間坐標(biāo)系的建立.3.線面垂直的判斷.4.二面角的求法.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐中,側(cè)面是邊長為2的正三角形,且與底面垂直,底面的菱形,的中點(diǎn).

(Ⅰ) 求證:平面;

(Ⅱ) 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐中,側(cè)面是邊長為2的正三角形,且與底面垂直,底面的菱形,的中點(diǎn).

(Ⅰ)求與底面所成角的大;

(Ⅱ)求證:平面;

(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆河北省邯鄲一中高三高考壓軸模擬考試文數(shù) 題型:解答題

(本小題12分)如圖,四棱錐中,
側(cè)面是邊長為2的正三角形,且與底面垂直,底面的菱形,的中點(diǎn).
(1)求與底面所成角的大;
(2)求證:平面;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省高三高考壓軸模擬考試文數(shù) 題型:解答題

(本小題12分)如圖,四棱錐中,

側(cè)面是邊長為2的正三角形,且與底面垂直,底面的菱形,的中點(diǎn).

(1)與底面所成角的大。

(2)求證:平面;

(3)求二面角的余弦值.

 

查看答案和解析>>

同步練習(xí)冊答案