(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n,則a1+a3+a5+…+a2n-1=______.
令x=1得:a0+a1+a2+…+a2n=3n;
令x=-1,得a0-a1+a2-…-a2n-1+a2n=1,
兩式相間,得a1+a3+…+a2n-1=
3n-1
2

故答案為:
3n-1
2
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設f(x)=(1+x)m+(1+x)n展開式中x的系數(shù)是19,(m、n∈N*
(1)求f(x)展開式中x2的系數(shù)的最小值.
(2)對f(x)展開式中x2的系數(shù)取得最小值時的m、n,求f(x)展開式中x7的系數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n,則a1+a3+a5+…+a2n-1=
3n-1
2
3n-1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1+x+x2)n=a0+a1x+…+a2nx2n,求a2+a4+…+a2n的值( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(1+x+x2)n=a0+a1x+…+a2nx2n,求a2+a4+…+a2n的值( 。
A.3nB.3n-2C.
3n-1
2
D.
3n+1
2

查看答案和解析>>

同步練習冊答案