【題目】如圖在四面體中,是邊長(zhǎng)為2的等邊三角形,為直角三角形,其中為直角頂點(diǎn),.分別是線段上的動(dòng)點(diǎn),且四邊形為平行四邊形.

1)求證:平面,平面

2)試探究當(dāng)二面角增加到90°的過程中,線段在平面上的投影所掃過的平面區(qū)域的面積;

3)設(shè),且為等腰三角形,當(dāng)為何值時(shí),多面體的體積恰好為?

【答案】1)見解析 2 3

【解析】

1)先通過線面平行的判定定理,證得平面,通過線面平行的性質(zhì)定理,證得,由此證得平面;同理證得平面.

2)畫出、時(shí)的投影,由此判斷出線段在平面上的投影所掃過的平面區(qū)域,進(jìn)而求得區(qū)域的面積.

3)先求得三棱錐的面積為,通過分割的方法,得到,分別求得的關(guān)系式,再由列方程,解方程求得的值.

1)∵四邊形為平行四邊形,

.而,,

.而,面,

.而,,

∥平面.同理,∥平面;

2)∵,

在平面上的投影滿足,即在線段的中垂線上.

如圖所示,將補(bǔ)成邊長(zhǎng)為的正,

當(dāng)二面角角時(shí),即點(diǎn)在平面上,此時(shí)

當(dāng)二面角角時(shí),此時(shí)中點(diǎn),

在平面上的投影所掃過的平面區(qū)域?yàn)?/span>,而

故線段在平面上的投影所掃過的平面區(qū)域的面積為;

3)∵,,且為等腰三角形,∴

中點(diǎn),易得:,,

滿足:,根據(jù)勾股定理可知

平面.∴

而多面體的體積恰好為,即多面體的體積恰為四面體體積的一半.

連接

,∴

,∴

,

,整理:,即

解得:舍去).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

1)若函數(shù)上單調(diào)遞增,求a的取值范圍;

2)用反證法證明:函數(shù)不可能為上的單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)

(1)求的單調(diào)區(qū)間;

(2)求函數(shù)上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下是某地搜集到的新房屋的銷售價(jià)格和房屋的面積的數(shù)據(jù):

房屋面積(

115

110

80

135

105

銷售價(jià)格(萬元)

24.8

21.6

18.4

29.2

22

(1)畫出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;

(2)求線性回歸方程,并在散點(diǎn)圖中加上回歸直線;

(3)據(jù)(2)的結(jié)果估計(jì)當(dāng)房屋面積為150時(shí)的銷售價(jià)格.附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖兩個(gè)同心球,球心均為點(diǎn),其中大球與小球的表面積之比為3:1,線段是夾在兩個(gè)球體之間的內(nèi)弦,其中兩點(diǎn)在小球上,兩點(diǎn)在大球上,兩內(nèi)弦均不穿過小球內(nèi)部.當(dāng)四面體的體積達(dá)到最大值時(shí),此時(shí)異面直線的夾角為,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(

A.經(jīng)過任意三點(diǎn)有且只有一個(gè)平面.

B.過點(diǎn)有且僅有一條直線與異面直線垂直.

C.一條直線與一個(gè)平面平行,它就和這個(gè)平面內(nèi)的任意一條直線平行.

D.與平面相交,則公共點(diǎn)個(gè)數(shù)為有限個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn).為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),結(jié)果如下表:記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.

分?jǐn)?shù)

甲班頻數(shù)

5

6

4

4

1

乙班頻數(shù)

1

3

6

5

5

1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)概率不超過0.025的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計(jì)

成績(jī)優(yōu)良

成績(jī)不優(yōu)良

總計(jì)

附:,其中.

臨界值表

0.10

0.05

0.025

2.706

3.841

5.024

2)現(xiàn)從上述40人中,學(xué)校按成績(jī)是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核.在這8人中,記成績(jī)不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, 是海面上一條南北方向的海防警戒線,在 上點(diǎn) 處有一個(gè)水聲監(jiān)測(cè)點(diǎn),另兩個(gè)監(jiān)測(cè)點(diǎn) 分別在 的正東方向 處和 處.某時(shí)刻,監(jiān)測(cè)點(diǎn) 收到發(fā)自目標(biāo) 的一個(gè)聲波, 后監(jiān)測(cè)點(diǎn) 后監(jiān)測(cè)點(diǎn) 相繼收到這一信號(hào),在當(dāng)時(shí)的氣象條件下,聲波在水中的傳播速度是

(1)設(shè) 的距離為 ,用 分別表示 的距離,并求 的值;

(2)求目標(biāo) 的海防警戒線 的距離(精確到 ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),且)是定義域?yàn)?/span>R的奇函數(shù).

1)求t的值;

2)若,求使不等式對(duì)一切恒成立的實(shí)數(shù)k的取值范圍;

3)若函數(shù)的圖象過點(diǎn),是否存在正數(shù)m),使函數(shù)上的最大值為0,若存在,求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案