【題目】已知拋物線C:y2=4x,其焦點為F,直線過點P(﹣2,0)
(1)若直線l與拋物線C有且僅有一個公共點,求l的方程;
(2)若直線l與拋物線交于不同的兩點A、B,求|FA|+|FB|的取值范圍.
【答案】(1)y = 0 或 x y + 2 = 0 (2)(6, +∞)
【解析】
(1)當(dāng)直線l的斜率為0時,直線l的方程為y=0;當(dāng)直線l的斜率不為0時,設(shè)直線方程為y=k(x+2),聯(lián)立直線方程與拋物線方程,化為關(guān)于x的一元二次方程,利用判別式為0求得k值,則直線方程可求.
(2)聯(lián)立聯(lián)立,得k2x2+(4k2﹣4)x+4k2=0,利用判別式大于0求得k的范圍,再由拋物線的焦半徑公式及根與系數(shù)的關(guān)系可得.
則|FA|+|FB|的取值范圍可求.
(1)如圖,當(dāng)直線l的斜率為0時,直線l的方程為y=0;
當(dāng)直線l的斜率不為0時,設(shè)直線方程為y=k(x+2),
聯(lián)立,得k2x2+(4k2﹣4)x+4k2=0.
由△=(4k2﹣4)2﹣16k4=﹣32k2+16=0,解得k=.
∴直線方程為y=.
綜上,若直線l與拋物線C有且僅有一個公共點,
直線l的方程為:y=0或y=;
(2)聯(lián)立聯(lián)立,得k2x2+(4k2﹣4)x+4k2=0.
設(shè)A(x1,y1),B(x2,y2).
當(dāng)k≠0時,由△=﹣32k2+16>0,得﹣<k<.
∴﹣<k<0或0<k<.
.
|FA|=,|FB|=,
則|FA|+|FB|=,
∵0,∴,則﹣2+>6.
∴|FA|+|FB|的取值范圍是(6,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.若a,b是兩條直線,且a∥b,那么a平行于經(jīng)過b的任何平面
B.若直線a和平面α滿足a∥α,那么a與α內(nèi)的任何直線平行
C.平行于同一條直線的兩個平面平行
D.若直線a,b和平面α滿足a∥b,a∥α,b不在平面α內(nèi),則b∥α
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天水市第一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進(jìn)行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,
得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體的棱長為1,分別為的中點.有下述四個結(jié)論:①直線與直線垂直;②直線與平面平行;③平面截正方體所得的截面面積為;④直線與直線所成角的正切值為;其中所有正確結(jié)論的編號是( )
A.②③B.②④C.①③D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)與銷售價格(單位:萬元/輛)進(jìn)行整理,得到如下的對應(yīng)數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
售價 | 16 | 13 | 9.5 | 7 | 4.5 |
(1)試求關(guān)于的回歸直線方程;
(2)已知每輛該型號汽車的收購價格為萬元,根據(jù)(1)中所求的回歸方程,預(yù)測為何值時,小王銷售一輛該型號汽車所獲得的利潤最大.
附:回歸方程中,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行運動會,其中三級跳遠(yuǎn)的成績在8.0米 (四舍五入,精確到0.1米) 以上的進(jìn)入決賽,把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30 ,第6小組的頻數(shù)是7 .
(Ⅰ)求進(jìn)入決賽的人數(shù);
(Ⅱ)若從該校學(xué)生(人數(shù)很多)中隨機(jī)抽取兩名,記表示兩人中進(jìn)入決賽的人數(shù),求的分布列及數(shù)學(xué)期望;
(Ⅲ) 經(jīng)過多次測試后發(fā)現(xiàn),甲成績均勻分布在8~10米之間,乙成績均勻分布在9.5~10.5米之間,現(xiàn)甲,乙各跳一次,求甲比乙遠(yuǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上無零點,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù),函數(shù)(x∈R).
(1) 求函數(shù)的單調(diào)區(qū)間;
(2) 若函數(shù)有極大值32,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的說法,正確的是( )
A.展開式中的二項式系數(shù)之和為2048
B.展開式中只有第6項的二項式系數(shù)最大
C.展開式中第6項和第7項的二項式系數(shù)最大
D.展開式中第6項的系數(shù)最小
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com