【題目】O為原點(diǎn)的直角坐標(biāo)系中,點(diǎn)A(4,﹣3)為△OAB的直角頂點(diǎn),已知AB=2OA,且點(diǎn)B的縱坐標(biāo)大于0
(1)求 的坐標(biāo);
(2)求圓C1:x2﹣6x+y2+2y=0關(guān)于直線OB對(duì)稱的圓C2的方程;在直線OB上是否存在點(diǎn)P,過(guò)點(diǎn)P的任意一條直線如果和圓C1圓C2都相交,則該直線被兩圓截得的線段長(zhǎng)相等,如果存在求出點(diǎn)P的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)解:設(shè) =(x,y),由AB=2OA, =0

,解得

,則yB=﹣11與點(diǎn)B的縱坐標(biāo)大于0矛盾

,則yB=5符合,即 =(6,8)


(2)解:C1:x2﹣6x+y2+2y=0,即(x﹣3)2+(y+1)2=10,所以C1(3,﹣1),r=

=(10,5),∴直線OB的方程為 x

設(shè)C2(a,b),則 ,∴a=1,b=3.

所以圓C2的方程為(x﹣1)2+(y﹣3)2=10

存在點(diǎn)P,根據(jù)圖形的對(duì)稱性,點(diǎn)P即為線段C1C2的中點(diǎn),坐標(biāo)為(2,1).


【解析】(1)由AB=2OA, =0,點(diǎn)B的縱坐標(biāo)大于0,求 的坐標(biāo);(2)求出圓C2的方程,即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(1, )在橢圓E: =1上,若斜率為 的直線l與橢圓E交于B,C兩點(diǎn),當(dāng)△ABC的面積最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4t,硝酸鹽18t;生產(chǎn)1車乙種肥料的主要原料是磷酸鹽1t、硝酸鹽15t.現(xiàn)庫(kù)存磷酸鹽10t、硝酸鹽66t.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤(rùn)為10000元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤(rùn)為5000元.那么分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC在內(nèi)角A、B、C的對(duì)邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A,B,C在圓x2+y2=1上運(yùn)動(dòng),且AB⊥BC,若點(diǎn)P的坐標(biāo)為 ,則 的取值范圍為(
A.[8,10]
B.[9,11]
C.[8,11]
D.[9,12]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c,且acosC,bcosB,ccosA成等差數(shù)列.
(1)求角B的大小;
(2)求2sin2A+cos(A﹣C)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=2x2+bx+c,不等式f(x)<0的解集為(0,5).
(1)求b,c的值;
(2)若對(duì)任意x∈[﹣1,1],不等式f(x)+t≤2恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)若采用樣本估計(jì)總體的方式,試估計(jì)小王的所有微信好友中每日走路步數(shù)超過(guò)5000步的概率;

(2)已知某人一天的走路步數(shù)超過(guò)8000步被系統(tǒng)評(píng)定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)若曲線處的切線的方程為,求實(shí)數(shù)的值;

2)設(shè),若對(duì)任意兩個(gè)不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

同步練習(xí)冊(cè)答案