已知函數(shù)g(x)=
a
ex
,其中a為實數(shù),求g(x)的極值.
考點:利用導(dǎo)數(shù)研究函數(shù)的極值
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得g(x)=
a
ex
=a•e-x在R上恒等于0(a=0)或在R上單調(diào),故不存在極值.
解答: 解:∵y=e-x在R上單調(diào)遞減,且e-x>0,
∴g(x)=
a
ex
=a•e-x在R上恒等于0(a=0)或在R上單調(diào),
故不存在極值.
點評:本題考查了極值的定義及函數(shù)單調(diào)性的判斷,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正數(shù)數(shù)列{an}前n項和Sn,且Sn=(
an+1
2
2,bn=(-1)nSn
(1)求數(shù)列{an}的通項公式;   
(2)求{bn}前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2x,x>0
3x,x≤0
則方程f(x)=1解的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知an+1+an=6n+3,求數(shù)列an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|F1F2|=m,點P到兩點F1、F2距離之差的絕對值為n(n<m).設(shè)點P的軌跡為C,過F1作AB⊥F1F2且交曲線C于點A、B,若△ABF2是直角三角形,則
m
n
的值為(  )
A、
2
+
1
4
B、
2
+1
C、
2
-1
D、
2
-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(π-α)=-
5
13
,且α是第四象限角,求sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(ax2+x-1)ex,其中e是自然對數(shù)的底數(shù),a∈R.
(Ⅰ)若a<0,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=-1,函數(shù)f(x)的圖象與函數(shù)g(x)=
1
3
x3+
1
2
x2+m的圖象有3個不同的交點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷f(x)=
x
x2-1
在(-1,1)上的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|(x-2a)(x+a-1)≤0},B={x|
x-3
x+2
>0},若A∪B=R,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案