【題目】已知函數(shù)f(x)|3x2|.

(1)解不等式f(x)<4|x1|;

(2)已知mn1(mn>0),若|xa|f(x)≤(a>0)恒成立,求實(shí)數(shù)a的取值范圍.

【答案】(1);(2).

【解析】

1)利用零點(diǎn)分段法分類討論解絕對(duì)值不等式即可.

2)利用基本不等式求出的最小值,令g(x)|xa|f(x)|xa||3x2|,只需g(x)max即可求解.

(1)不等式f(x)<4|x1|,即|3x2||x1|<4.

當(dāng)x<時(shí),即-3x2x1<4

解得-<x<;

當(dāng)-x≤1時(shí),即3x2x1<4,

解得-x<;

當(dāng)x>1時(shí),即3x2x1<4,無(wú)解.

綜上所述,不等式的解集為.

(2) (mn)11,

當(dāng)且僅當(dāng)時(shí)取等號(hào),

g(x)|xa|f(x)|xa||3x2|

所以當(dāng)x=-時(shí),g(x)maxa,要使不等式恒成立,

只需g(x)maxa≤4,即0<a

.故實(shí)數(shù)a的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中為常數(shù)且)在處取得極值.

(1)當(dāng)時(shí),求的極大值點(diǎn)和極小值點(diǎn);

(2)若上的最大值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是平行四邊形,平面,垂足為上,且,,四面體的體積為.

(1)求點(diǎn)到平面的距離;

(2)若點(diǎn)是棱上一點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),若函數(shù)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,過(guò)點(diǎn)且與軸不重合的直線與相交于兩點(diǎn),點(diǎn),直線與直線交于點(diǎn).

1)當(dāng)垂直于軸時(shí),求直線的方程;

2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,E,F分別為AC,BC的中點(diǎn).

1)求證:EF∥平面PAB;

2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求證:平面PEF⊥平面PBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A 為橢圓的下頂點(diǎn),過(guò) A 的直線 l 交拋物線于B、C 兩點(diǎn),C 是 AB 的中點(diǎn).

(I)求證:點(diǎn)C的縱坐標(biāo)是定值;

(II)過(guò)點(diǎn)C作與直線 l 傾斜角互補(bǔ)的直線l交橢圓于M、N兩點(diǎn),求p的值,使得△BMN的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且橢圓上的點(diǎn)到焦點(diǎn)的最長(zhǎng)距離為

1)求橢圓C的方程;

2)過(guò)點(diǎn)P02)的直線l(不過(guò)原點(diǎn)O)與橢圓C交于兩點(diǎn)A、BM為線段AB的中點(diǎn).

(。┳C明:直線OMl的斜率乘積為定值;

(ⅱ)求OAB面積的最大值及此時(shí)l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系(),點(diǎn)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段的延長(zhǎng)線上,且滿足,點(diǎn)的軌跡為。

(Ⅰ)求的極坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)的極坐標(biāo)為,求面積的最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案