19.已知f(x)是奇函數(shù),g(x)是偶函數(shù),且f(-1)+g(1)=4,f(1)+g(-1)=8,則g(1)等于6.

分析 利用函數(shù)的奇偶性,通過求解方程即可.

解答 解:f(x)是奇函數(shù),g(x)是偶函數(shù),且f(-1)+g(1)=4,f(1)+g(-1)=8,
可得-f(1)+g(1)=4,f(1)+g(1)=8,解得g(1)=6.
故答案為:6;

點(diǎn)評 本題考查函數(shù)的奇偶性的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.x為第三象限角,則$\frac{{1+cos2x+4{{sin}^2}x}}{sin2x}$的最小值是(  )
A.2B.$2\sqrt{2}$C.$2\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè) a>b,則使$\frac{1}{a}>\frac{1}$成立的一個充要條件是( 。
A.b<0<aB.0<a<bC.b<a<0D.-1<b<0<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,-$\sqrt{3}$),(0,$\sqrt{3}$)的距離之和等于4,設(shè)點(diǎn)P的軌跡為C.
(1)求曲線C的方程;
(2)過點(diǎn)(0,$\sqrt{3}$)作直線l與曲線C交于點(diǎn)A、B,以線段AB為直徑的圓能否過坐標(biāo)原點(diǎn),若能,求出直線l的方程,若不能請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)集合A=$\left\{{\left.x\right|y=\sqrt{1-x}}\right\}$,集合B={y|y=x2-4x+3},則集合A∩B=(  )
A.(-∞,1]B.[-1,+∞)C.[-1,1]D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)求中心在原點(diǎn),焦點(diǎn)在x軸上,焦距等于4,且經(jīng)過點(diǎn)P$(3,-2\sqrt{6})$的橢圓方程;
(2)過橢圓x2+2y2=2的左焦點(diǎn)引一條傾斜角為45°的直線與橢圓交A、B兩點(diǎn),橢圓的中心為O,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.不等式|x-8|≥2的解集為{x|x≥10或x≤6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知等比數(shù)列{an}中,a2+a5=18,a3•a4=32,若an=128,則n=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)復(fù)數(shù)m2-1+(m+1)i是實數(shù),求實數(shù)m的值;
(2)復(fù)數(shù)$z=(\sqrt{x}-1)+({x^2}-3x+2)i$的對應(yīng)點(diǎn)位于第二象限,求實數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案