A. | [-$\frac{3}{4}$π,$\frac{π}{4}$] | B. | [-π,0] | C. | [-$\frac{π}{4}$,$\frac{3}{4}$π] | D. | [-$\frac{π}{2}$,$\frac{π}{2}$] |
分析 根據(jù)余弦函數(shù)的單調(diào)性,逐一判斷各個選項(xiàng)是否正確,從而得出結(jié)論.
解答 解:在[-$\frac{3}{4}$π,$\frac{π}{4}$]上,x+$\frac{π}{4}$∈[-$\frac{π}{2}$,$\frac{π}{2}$],余弦函數(shù)y=cos(x+$\frac{π}{4}$)在[-$\frac{3}{4}$π,$\frac{π}{4}$]上沒有單調(diào)性,故排除A;
在[-π,0]上,x+$\frac{π}{4}$∈[-$\frac{3π}{4}$,$\frac{π}{4}$],余弦函數(shù)y=cos(x+$\frac{π}{4}$)在[-π,0]上沒有單調(diào)性,故排除B;
在[-$\frac{π}{4}$,$\frac{3π}{4}$]上,x+$\frac{π}{4}$∈[0,0],余弦函數(shù)y=cos(x+$\frac{π}{4}$)在[-$\frac{π}{4}$,$\frac{3π}{4}$]上單調(diào)遞減,故C滿足條件;
在[-$\frac{π}{2}$,$\frac{π}{2}$]上,x+$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{3π}{4}$],余弦函數(shù)y=cos(x+$\frac{π}{4}$)在[-$\frac{π}{2}$,$\frac{π}{2}$]上沒有單調(diào)性,故排除D,
故選:C.
點(diǎn)評 本題主要考查余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com