已知命題p:x2-5x+6≥0;命題q:0<x<4.若p是真命題,q是假命題,求實數(shù)x的取值范圍.
考點:命題的真假判斷與應用
專題:不等式的解法及應用,簡易邏輯
分析:當命題p為真命題時,得到x的范圍,命題q為假命題時,得到x的范圍,進而可得到實數(shù)x的取值范圍;
解答: 解:由于p是真命題,由x2-5x+6≥0,得x≥3或x≤2;
由于q是假命題,命題q:0<x<4,
∴x≤0或x≥4.
則{x|x≥3或x≤2}∩{x|x≤0或x≥4}
={x|x≤0或x≥4},
∴滿足條件的實數(shù)x的取值范圍為(-∞,0]∪[4,+∞)
故實數(shù)x的取值范圍(-∞,0]∪[4,+∞)
點評:本題考查二次不等式的解法及求集合的交集.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,其中a2=6,且
an+1+an-1
an+1-an+1
=n.
(1)求a1,a3,a4;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

PM2.5是指大氣中直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物,我國PM2.5標準采用世衛(wèi)組織設定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米至75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標,北方城市環(huán)保局從該市市區(qū)2013年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機的抽取20天的數(shù)據(jù)作為樣本,發(fā)現(xiàn)空氣質(zhì)量為一級的有4天,為二級的有10天,超標的有6天.
(1)從這20天的日均PM2.5監(jiān)測數(shù)據(jù)中,隨機抽出三天數(shù)據(jù),求恰有一天空氣質(zhì)量達到一級的概率;
(2)從這20天的數(shù)據(jù)中任取三天數(shù)據(jù),求抽到PM2.5監(jiān)測數(shù)據(jù)超標的天數(shù)不超過2天的概率;
(3)根據(jù)這20天的PM2.5日均值來估計一年的空氣質(zhì)量情況,則一年(按365天計算)中平均有多少天的空氣質(zhì)量達到一級或二級.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx(a∈R).
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)求f(x)的單調(diào)區(qū)間;
(3)若a=-1,問:當x>1時,f(x)<
2
3
x3是否恒成立,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖在單位圓中,
(1)證明兩角差的余弦公式Cα-β:cos(α-β)=cosαcosβ+sinαsinβ;并由Cα-β推導兩角差的正弦公式Sα-β:sin(α-β).
(2)計算:sin15°的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+cos2x.
(Ⅰ)求函數(shù)f(x)的最大值及相應x的取值集合;
(Ⅱ)將函數(shù)f(x)的圖象向左平移
π
12
個單位得到函數(shù)g(x)的圖象,試求函數(shù)g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=sin(2x+
3
),將其圖象向左平移
π
4
個單位,再向上平移
1
2
個單位得到函數(shù)f(x)=acos2(x+
π
3
)+b的圖象.
(1)求實數(shù)a、b的值;
(2)設函數(shù)φ(x)=g(x)-
3
f(x),求函數(shù)φ(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=
4
ex+1
上任意一點處的切線傾斜角為α,則α的范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足約束條件
x≥y
x+2y≤3
y≥0
恒有x+ay<4(a∈R)成立,則a的取值范圍是
 

查看答案和解析>>

同步練習冊答案