【題目】已知橢圓的短軸兩端點與左焦點圍成的三角形面積為3,短軸兩端點與長軸一端點圍成的三角形面積為2,設(shè)橢圓的左、右頂點分別為是橢圓上除兩點外一動點.

1)求橢圓的方程;

2)過橢圓的左焦點作平行于直線是坐標原點)的直線,與曲線交于兩點,點關(guān)于原點的對稱點為,求證:成等比數(shù)列.

【答案】1;(2)見解析

【解析】

1)根據(jù)題意和橢圓中的關(guān)系,列出方程組,解這個方程組即可;

2)依題意,要證成等比數(shù)列,只需證,即.設(shè)出直線的方程、直線的方程,分別與橢圓方程聯(lián)立,結(jié)合根與系數(shù)關(guān)系,求出相應(yīng)線段的長度進行證明即可.

1)解:依題意,得解得故橢圓的方程為

2)證明:依題意,要證成等比數(shù)列,

只需證,即.設(shè)直線,直線,

聯(lián)立,,故

聯(lián)立

設(shè),則

,

,所以成等比數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列分別滿足:,其中,其中,設(shè)數(shù)列n項和分別為.

1)若數(shù)列為遞增數(shù)列,求數(shù)列的通項公式;

2)若數(shù)列滿足:存在唯一的正整數(shù)k),使得,則稱k墜點數(shù)列

(Ⅰ)若數(shù)列“6墜點數(shù)列",求

(Ⅱ)若數(shù)列“5墜點數(shù)列,是否存在p墜點數(shù)列,使得,若存在,求正整數(shù)m的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于數(shù)列,定義的“優(yōu)值”.現(xiàn)已知某數(shù)列的“優(yōu)值”為 ,記數(shù)列的前項和為,若對一切的,都有恒成立,則實數(shù)的取值范圍為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,直線與拋物線交于不同兩點、,直線、與拋物線的另一交點分別為兩點、,連接,點關(guān)于直線的對稱點為點,連接

1)證明:

2)若的面積,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中.對于不相等的實數(shù),,設(shè)下列說法正確的是(

A.對于任意不相等的實數(shù),,都有;

B.對于任意的及任意不相等的實數(shù),,都有;

C.對于任意的,存在不相等的實數(shù),,使得;

D.對于任意的,存在不相等的實數(shù),,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù))

(1)若直線為曲線的一條切線,求實數(shù)的值;

(2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實數(shù)的取值范圍;

(3)設(shè),若在定義域上有極值點(極值點是指函數(shù)取得極值時對應(yīng)的自變量的值),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險,現(xiàn)從名參保人員中隨機抽取名作為樣本進行分析,按年齡段、、分成了五組,其頻率分布直方圖如下圖所示,參保年齡與每人每年應(yīng)交納的保費如下表所示.

年齡(單位:歲)

保費(單位:元)

1)求頻率分布直方圖中實數(shù)的值,并求出該樣本年齡的中位數(shù);

2)現(xiàn)分別在年齡段、、、中各選出人共人進行回訪.若從這人中隨機選出人,求這人所交保費之和大于元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)在點處的切線斜率為0.

1)試用含有的式子表示,并討論的單調(diào)性;

2)對于函數(shù)圖象上的不同兩點,,如果在函數(shù)圖象上存在點,使得在點處的切線,則稱存在跟隨切線”.特別地,當時,又稱存在中值跟隨切線”.試問:函數(shù)上是否存在兩點使得它存在中值跟隨切線,若存在,求出的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若對時,不等式恒成立,求實數(shù)a的取值范圍(e為自然對數(shù)的底數(shù));

2)當時,求函數(shù)的極大值;

3)求證:當時,曲線與直線有且僅有一個公共點.

查看答案和解析>>

同步練習(xí)冊答案