已知方程|x-2n|-k
x
=0(n∈N*)在區(qū)間[2n-1,2n+1]上有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是( 。
A、0<k≤
1
2n+1
B、0<k≤
1
2n+1
C、
1
2n+1
≤k≤
1
2n+1
D、0<k<
1
2n+1
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:取特殊值n=1,將問題轉(zhuǎn)化為求兩個(gè)函數(shù)的交點(diǎn)問題,通過驗(yàn)證得出答案.
解答: 解:通過觀察發(fā)現(xiàn),令n=1進(jìn)行檢驗(yàn),
轉(zhuǎn)化為y1=|x-2|與y2=k
x
在[1,3]上有兩交點(diǎn)的條件.
只需滿足B在A下方(包括重合),
k
3
≤1⇒k≤
3
3
,且k>0,
只有B滿足,
故選:B.
點(diǎn)評(píng):本題考察了函數(shù)的根的存在性問題,滲透了轉(zhuǎn)化思想,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
-5
2-i
的共軛復(fù)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x、y為非零實(shí)數(shù),代數(shù)式
x2
y2
+
y2
x2
-8(
x
y
+
y
x
)+15的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在各項(xiàng)都為正數(shù)的等比數(shù)列{an}中,首項(xiàng)為3,前3項(xiàng)和為21,則q等于( 。
A、6B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=2,2an+1=2an+1,則a99的值為( 。
A、49B、50C、51D、52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x2+2x-3的零點(diǎn)個(gè)數(shù)為( 。
A、0B、1C、2D、無數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z滿足(1+2i)z=4+ai(a∈R,i是虛數(shù)單位),若復(fù)數(shù)z的實(shí)部與虛部相等,則a等于( 。
A、12
B、4
C、-
4
3
D、-l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)y=x3為R上的奇函數(shù);命題q:若b2=ac,則a,b,c不一定成等比數(shù)列.下列說法正確的是( 。
A、p或q為假
B、p且q為真
C、¬p且q為真
D、¬p或q為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)A(-2,0),B(2,0),滿足MA,MB的斜率乘積為定值-
3
4
的動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點(diǎn)A的動(dòng)直線l與曲線C的交點(diǎn)為P,與過點(diǎn)B垂直于x軸的直線交于點(diǎn)D,又已知點(diǎn)F(1,0),試判斷以BD為直徑的圓與直線PF的位置關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案