分析 (Ⅰ)利用已知條件直接列出該企業(yè)每天生產(chǎn)這種產(chǎn)品所獲得的利潤y表示為x的函數(shù);
(Ⅱ)利用(Ⅰ)求解函數(shù)的導(dǎo)數(shù),利用函數(shù)的極值以及單調(diào)性,求解函數(shù)的最值即可.
解答 (本小題滿分13分)
解:(Ⅰ)根據(jù)題意,該企業(yè)所得利潤為:y=20•[3(x-p)-p]=20(3x-4p)=60x-80p…(2分)
=60x-80(0.1125x2-3.6lnx+1)=60x-9x2+288lnx-80(4≤x≤12).…(5分)
(Ⅱ)由(Ⅰ)知:$y'=60-18x+\frac{288}{x}=\frac{{60x-18{x^2}+288}}{x}$…(6分)
=$\frac{{-6(3{x^2}-10x-48)}}{x}=\frac{-6(3x+8)(x-6)}{x}$.
令y'=0,可得x=6或$x=-\frac{8}{3}$.…(8分)
從而當(dāng)4<x<6時(shí),y'>0,函數(shù)在(4,6)上為增函數(shù);
當(dāng)6<x<12時(shí),y'<0,函數(shù)在(6,12)上為減函數(shù).…(9分)
所以當(dāng)x=6時(shí)函數(shù)取得極大值,
即當(dāng)x=6時(shí),${y_{min}}=60×6-9×{6^2}+288ln6-80=288ln6-44$,…(12分)
所以每臺(tái)機(jī)器的日產(chǎn)量為6萬件時(shí),該企業(yè)的利潤最大,
最大利潤為288ln6-44(萬元).…(13分)
點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,函數(shù)的解析式的求法,考查分析問題解決問題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k•360°-40°,k∈Z | B. | k•180°-40°,k∈Z | C. | k•360°+40°,k∈Z | D. | k•180°+40°,k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ③⑤ | C. | ②③⑤ | D. | ③④⑤ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | $\frac{3π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M∩N | B. | M∩(∁UN) | C. | (∁UM)∩N | D. | (∁UM)∩(∁UN) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com