【題目】設數(shù)列{an}的前n項和為Sn , 且Sn=2﹣an , n∈N* , 設函數(shù)f(x)=log x,數(shù)列{bn}滿足bn=f(an),記{bn}的前n項和為Tn . (Ⅰ)求an及Tn;
(Ⅱ)記cn=anbn , 求cn的最大值.
【答案】解:(Ⅰ)由Sn=2﹣an , 得a1=1; 當n≥2時,an=Sn﹣Sn﹣1=2﹣an=(2﹣an﹣1)=an﹣1﹣an ,
∴ ,
則數(shù)列{an}是公比q= ,首項a1=1的等比數(shù)列,
∴ ,
∴bn=f(an)=n﹣1,
則 ;
(Ⅱ)cn=anbn=(n=1) ,
由cn+1﹣cn= .
當n=1時,c2>c1;
當n=2時,c3=c2;
當n≥3時,cn+1>cn .
∴
【解析】(Ⅰ)由已知數(shù)列遞推式求得首項,進一步得到數(shù)列{an}是公比q= ,首項a1=1的等比數(shù)列,求其通項公式,代入bn=f(an),得{bn}為等差數(shù)列,則{bn}的前n項和為Tn可求;(Ⅱ)把an , bn代入cn=anbn , 由作差法可得單調性,利用單調性求得cn的最大值.
【考點精析】通過靈活運用數(shù)列的前n項和和數(shù)列的通項公式,掌握數(shù)列{an}的前n項和sn與通項an的關系;如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】對某班50人進行智力測驗,其得分如下:
48,64,52,86,71,48,64,41,86,79,71,68,82,84,68,64,62,68,81,57,90,52,74,73,56,78,47,66,55,64,56,88,69,40,73,97,68,56,67,59,70,52,79,44,55,69,62,58,32,58.
(1)這次測試成績的最大值和最小值各是多少?
(2)將[30,100)平分成7個小區(qū)間,試畫出該班學生智力測驗成績的頻數(shù)分布圖.
(3)分析這個頻數(shù)分布圖,你能得出什么結論?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=px﹣ ﹣2lnx.
(Ⅰ)若p=2,求曲線f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內為增函數(shù),求正實數(shù)p的取值范圍;
(Ⅲ)設函數(shù)g(x)= (e為自然對數(shù)底數(shù)),若在[1,e]上至少存在一點x0 , 使得f(x0)>g(x0)成立,求實數(shù)p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+2kx﹣4,若對任意x∈R,f(x)﹣|x+1|﹣|x﹣1|≤0恒成立,則實數(shù)k的取值范圍是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,若焦點在x軸上的橢圓C的焦距為2,且離心率為 .
(1)求橢圓C的標準方程;
(2)若經過點(0, )且斜率為k的直線l與橢圓C有兩個不同的交點P和Q. (Ⅰ)求k的取值范圍;
(Ⅱ)設橢圓C與x軸正半軸、y軸正半軸的交點分別為A,B,是否存在常數(shù)k,使得向量 與 共線?如果存在,求k值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線 =1(a>0,b>0),A1 , A2是實軸頂點,F(xiàn)是右焦點,B(0,b)是虛軸端點,若在線段BF上(不含端點)存在不同的兩點p1(i=1,2),使得△PiA1A2(i=1,2)構成以A1A2為斜邊的直角三角形,則雙曲線離心率e的取值范圍是( )
A.( ,+∞)
B.( ,+∞)
C.(1, )
D.( , )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知雙曲線 =1(a>0,b>0)的左右焦點分別為F1 , F2 , |F1F2|=4,P是雙曲線右支上的一點,F(xiàn)2P與y軸交于點A,△APF1的內切圓在邊PF1上的切點為Q,若|PQ|=1,則雙曲線的離心率是( )
A.3
B.2
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 ,B(0,2),C(1,0),斜率為 的直線l過點A,且l和以C為圓心的圓相切.
(1)求圓C的方程;
(2)在圓C上是否存在點P,使得 ,若存在,求出所有的點P的坐標;若不存在說明理由;
(3)若不過C的直線m與圓C交于M,N兩點,且滿足CM,MN,CN的斜率依次為等比數(shù)列,求直線m的斜率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com