[2012·遼寧高考]已知正三棱錐P-ABC,點P,A,B,C都在半徑為
的球面上,若PA,PB,PC兩兩相互垂直,則球心到截面ABC的距離為________.
依題意,以PA,PB,PC為棱構(gòu)造如圖所示的正方體,且此球為正方體的外接球,PD
1為球的直徑,PD
1的中點O為球心,由PD
1=2
,可得PA=PB=PC=2,由等積法可得三棱錐P-ABC的高為
,∴球心O到平面ABC的距離為
-
=
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐
中,底面
為平行四邊形,
,
,
,
是正三角形,平面
平面
.
(1)求證:
;
(2)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在正方體
中,
,
為
的中點,
為
的中點.
(1)求證:平面
平面
;
(2)求證:
平面
;
(3)設(shè)
為正方體
棱上一點,給出滿足條件
的點
的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐
中,底面
是平行四邊形,
,
平面
,
,
,
是
的中點.
(1)求證:
平面
;
(2)若以
為坐標(biāo)原點,射線
、
、
分別是
軸、
軸、
軸的正半軸,建立空間直角坐標(biāo)系,已經(jīng)計算得
是平面
的法向量,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)
是兩條不同的直線,
是兩個不重合的平面,給定下列四個命題:
①若
,
,則
;
②若
,
,則
;
③若
,
,則
;
④若
,
,
,則
.
其中真命題的序號為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐
的底面邊長為8的正方形,四條側(cè)棱長均為
.點
分別是棱
上共面的四點,平面
平面
,
平面
.
證明:
若
,求四邊形
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
是兩條不同直線,
是三個不同平面,則下列正確的是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
[2013·鄭州模擬]設(shè)α,β,γ為三個不同的平面,m,n是兩條不同的直線,在命題“α∩β=m,n?γ,且________,則m∥n”中的橫線處填入下列三組條件中的一組,使該命題為真命題.
①α∥γ,n?β;②m∥γ,n∥β;③n∥β,m?γ.
可以填入的條件有( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,BC邊上存在點Q,使得PQ⊥QD,則實數(shù)a的取值范圍是________.
查看答案和解析>>