精英家教網(wǎng)如圖,A,B,C,D為空間四點,在△ABC中,AB=2,AC=BC=
2
.等邊三角形ADB以AB為軸運動.當(dāng)CD=
 
時,面ACD⊥面ADB.
分析:取出AB中點E,連接DE,CE,由等邊三角形ADB可得出DE⊥AB,又平面ADB⊥平面ABC,故DE⊥平面ABC,在Rt△DEC中用勾股定理求出CD
解答:精英家教網(wǎng)解:取AB的中點E,連接DE,CE,
因為ADB是等邊三角形,所以DE⊥AB.
當(dāng)平面ADB⊥平面ABC時,
因為平面ADB∩平面ABC=AB,
所以DE⊥平面ABC,
可知DE⊥CE
由已知可得 DE=
3
,EC=1
,在Rt△DEC中,CD=
DE2+EC2
=2

故答案為2
點評:本題考查的知識點是面面垂直的性質(zhì)及空間兩點間的位置關(guān)系,其中根據(jù)已知條件得到DE⊥CE將空間兩點間的距離問題轉(zhuǎn)化為解直角三角形問題是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、如圖,A,B,C,D四點都在平面a,b外,它們在a內(nèi)的射影A1,B1,C1,D1是平行四邊形的四個頂點,在b內(nèi)的射影A2,B2,C2,D2在一條直線上,求證:ABCD是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,A,B,C,D為空間四點.在△ABC中,AB=2,AC=BC=
2

等邊三角形ADB以AB為軸運動.
(Ⅰ)當(dāng)平面ADB⊥平面ABC時,求CD;
(Ⅱ)當(dāng)△ADB轉(zhuǎn)動時,是否總有AB⊥CD?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A、B、C、D是某煤礦的四個采煤點,l是公路,圖中所標(biāo)線段為道路,ABQP、BCRQ、CDSR近似于正方形.已知A、B、C、D四個采煤點每天的采煤量之比約為5:1:2:3,運煤的費用與運煤的路程、所運煤的重量都成正比.現(xiàn)要從P、Q、R、S中選出一處設(shè)立一個運煤中轉(zhuǎn)站,使四個采煤點的煤運到中轉(zhuǎn)站的費用最少,則地點應(yīng)選在( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)二模)如圖,A,B,C,D是⊙O上的四個點,過點B的切線與DC的延長線交于點E.若∠BCD=110°,則∠DBE=( 。

查看答案和解析>>

同步練習(xí)冊答案