【題目】已知函數(shù)fx)=lnx

1)若a4,求函數(shù)fx)的單調(diào)區(qū)間;

2)若函數(shù)fx)在區(qū)間(0,1]內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;

3)若x1、x2R+,且x1x2,求證:(lnx1lnx2)(x1+2x2≤3x1x2).

【答案】(1)見解析;(2);(3)見解析

【解析】

(1)a=4代入f(x)求出f(x)的導(dǎo)函數(shù),然后根據(jù)導(dǎo)函數(shù)的符號,得到函數(shù)的單調(diào)區(qū)間;

(2)根據(jù)條件將問題轉(zhuǎn)化為,上恒成立問題,然后根據(jù)函數(shù)的單調(diào)性求出的范圍;

(3)根據(jù)條件將問題轉(zhuǎn)化為成立問題,,成立,再利用函數(shù)的單調(diào)性證明即可.

:(1)的定義域是,,

所以,,

,解得,

,解得,

,上單調(diào)遞增,,上單調(diào)遞減.

(2)(1),

若函數(shù)在區(qū)間,遞增,則有,上恒成立,

,上恒成立成立,所以只需,

因?yàn)楹瘮?shù)時取得最小值9,所以,

所以a的取值范圍為.

(3)當(dāng),不等式顯然成立,

當(dāng),因?yàn)?/span>,,所以要原不等式成立,

只需成立即可,

,,

(2)可知函數(shù),遞增,所以,

所以成立,

所以(lnx1lnx2)(x1+2x2)≤3(x1x2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的一條弦被點(diǎn)平分,則此弦所在的直線方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(用數(shù)字作答)從5本不同的故事書和4本不同的數(shù)學(xué)書中選出4本,送給4位同學(xué),每人1本,問:

1)如果故事書和數(shù)學(xué)書各選2本,共有多少種不同的送法?

2)如果故事書甲和數(shù)學(xué)書乙必須送出,共有多少種不同的送法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,來自一帶一路沿線的20國青年評選出了中國的新四大發(fā)明:高鐵、掃碼支付、共享單車和網(wǎng)購.其中共享單車既響應(yīng)綠色出行號召,節(jié)能減排,保護(hù)環(huán)境,又方便人們短距離出行,增強(qiáng)靈活性.某城市試投放3個品牌的共享單車分別為紅車、黃車、藍(lán)車,三種車的計(jì)費(fèi)標(biāo)準(zhǔn)均為每15分鐘(不足15分鐘按15分鐘計(jì))1元,按每日累計(jì)時長結(jié)算費(fèi)用,例如某人某日共使用了24分鐘,系統(tǒng)計(jì)時為30分鐘.A同學(xué)統(tǒng)計(jì)了他1個月(按30天計(jì))每天使用共享單車的時長如莖葉圖所示,不考慮每月自然因素和社會因素的影響,用頻率近似代替概率.設(shè)A同學(xué)每天消費(fèi)元.

1)求的分布列及數(shù)學(xué)期望;

2)各品牌為推廣用戶使用,推出APP注冊會員的優(yōu)惠活動:紅車月功能使用費(fèi)8元,每天消費(fèi)打5折;黃車月功能使用費(fèi)20元,每天前15分鐘免費(fèi),之后消費(fèi)打8折;藍(lán)車月功能使用費(fèi)45元,每月使用22小時之內(nèi)免費(fèi),超出部分按每15分鐘1元計(jì)費(fèi).設(shè)分別為紅車,黃車,藍(lán)車的月消費(fèi),寫出的函數(shù)關(guān)系式,參考(1)的結(jié)果,A同學(xué)下個月選擇其中一個注冊會員,他選哪個費(fèi)用最低?

3)該城市計(jì)劃3個品牌的共享單車共3000輛正式投入使用,為節(jié)約居民開支,隨機(jī)調(diào)查了100名用戶一周的平均使用時長如下表:

時長

(0,15]

(1530]

(30,45]

(45,60]

人數(shù)

16

45

34

5

在(2)的活動條件下,每個品牌各應(yīng)該投放多少輛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a∈R).

(Ⅰ)求f(x)在區(qū)間[-1,2]上的最值;

(Ⅱ)若過點(diǎn)P(1,4)可作曲線y=f(x)的3條切線,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第十三屆全國人大常委會第十一次會議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對某試點(diǎn)社區(qū)抽取戶居民進(jìn)行調(diào)查,得到如下的列聯(lián)表.

分類意識強(qiáng)

分類意識弱

合計(jì)

試點(diǎn)后

試點(diǎn)前

合計(jì)

已知在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識強(qiáng)的概率為.

1)請將上面的列聯(lián)表補(bǔ)充完整;

2)判斷是否有的把握認(rèn)為居民分類意識的強(qiáng)弱與政府宣傳普及工作有關(guān)?說明你的理由;

參考公式:,其中.

下面的臨界值表僅供參考

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中表示不超過的最大整數(shù),下列關(guān)于說法正確的有:______

的值域?yàn)閇-1,1]

為奇函數(shù)

為周期函數(shù),且最小正周期T=4

在[0,2)上為單調(diào)增函數(shù)

的圖像有且僅有兩個公共點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),拋物線,點(diǎn),設(shè)直線交于不同的兩點(diǎn)、.

(1)若直線軸,求直線的斜率的取值范圍;

(2)若直線不垂直于軸,且,證明:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小李根據(jù)以往多次考試狀態(tài)研究得到,今后三次考試數(shù)學(xué)考分以上的概率相同.現(xiàn)用隨機(jī)模擬的方法預(yù)測三次考試有兩次數(shù)學(xué)考分以上的概率,規(guī)定投一次骰子出現(xiàn)點(diǎn)和點(diǎn)代表考分以上;投三次骰子代表三次;產(chǎn)生的三個隨機(jī)數(shù)作為一組.得到的組隨機(jī)數(shù)如下:,,,,,,.則在此次隨機(jī)模擬試驗(yàn)中,每次數(shù)學(xué)考分以上的概率和三次中數(shù)學(xué)有兩次考分以上的概率的近似值分別為(

A.,B.C.,D.,

查看答案和解析>>

同步練習(xí)冊答案