已知集合E={x|1-m≤x≤1+m},F(xiàn)={x|x<-2或x>0},若E∩F=∅,求實(shí)數(shù)m的取值范圍.
考點(diǎn):集合關(guān)系中的參數(shù)取值問(wèn)題
專(zhuān)題:計(jì)算題,集合
分析:根據(jù)集合E={x|1-m≤x≤1+m},F(xiàn)={x|x<-2或x>0},E∩F=∅,可得
1-m≥-2
1+m≤0
,解不等式,即可求實(shí)數(shù)m的取值范圍.
解答: 解:∵集合E={x|1-m≤x≤1+m},F(xiàn)={x|x<-2或x>0},E∩F=∅,
1-m≥-2
1+m≤0
,且1-m≤1+m,
∴m=∅.
1-m>1+m時(shí),m<0,E是∅,也成立.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是集合關(guān)系中的參數(shù)取值問(wèn)題,考查解不等式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,其中正(主)視圖與側(cè)(左)視圖的邊界均為直角三角形,俯視圖的邊界為直角梯形,則該幾何體的體積是( 。
A、
1
3
B、
1
2
C、1
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若M={x|x2-x-2>0,x∈Z},T={x|2x2+(5+2k)x+5k<0}且Ck(M∩T)=(-∞,-2)∪(-2,+∞),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=log 
1
2
(-x2-2x)的定義域,單調(diào)區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知單位向量
m
n
的夾角為60°,
(1)試判斷2
n
-
m
m
的關(guān)系并證明;
(2)求
n
n
+
m
方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1=1,2a2+a3=15.
(Ⅰ)求數(shù)列{an}通項(xiàng)公式;
(Ⅱ)若等差數(shù)列{bn}滿(mǎn)足b1=a2,b3=a3,求數(shù)列{anbn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={1,3,-a2},B={1,a+2},是否存在著實(shí)數(shù)a,使得A∩B=B?若存在,求出集合A和B,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A是由不超過(guò)2009的所有正整數(shù)構(gòu)成的集合,即A={1,2,…2009},集合L⊆A,且L中任意兩個(gè)不同元素之差都不等于4,則集合L元素個(gè)數(shù)的最大可能值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+sinx.項(xiàng)數(shù)為19的等差數(shù)列{an}滿(mǎn)足an(-
π
2
,
π
2
)
,且公差d≠0.若f(a1)+f(a2)+…+f(a18)+f(a19)=0,則當(dāng)k=
 
時(shí),f(ak)=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案