如圖,長方體中,,G是上的動點。
(l)求證:平面ADG
(2)判斷與平面ADG的位置關(guān)系,并給出證明;
(3)若G是的中點,求二面角G-AD-C的大;
(1)詳見解析(2)詳見解析(3)

試題分析:(1)在長方體中,,且平面
可得平面平面
(2)由 ,且平面,平面可知平面
(3)首先由證明是二面角的平面角,再利用等腰直角三角形
求出的大。
試題解析:(1)是長方體,且
平面
平面, 平面平面
(2)當點重合時,在平面內(nèi),
當點不重合時,平面
證明:是長方體,

若點重合,平面確定的平面,平面
若點不重合
平面,平面
平面
(3)為二面角的平面角
中,
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1.
(1)設(shè)平面ABE與平面ACD的交線為直線,求證:∥平面BCDE;
(2)設(shè)F是BC的中點,求證:平面AFD⊥平面AFE;
(3)求幾何體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.
(1)求證:BF∥平面ACE;
(2)求證:BF⊥BD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線就和兩平面的交線平行.
請對上面定理加以證明,并說出定理的名稱及作用.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知四棱錐P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一點.

⑴求證:平面PAD⊥面PBD;
⑵當Q在什么位置時,PA∥平面QBD?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(2014·黃岡模擬)設(shè)a,b是平面α內(nèi)兩條不同的直線,l是平面α外的一條直線,則“l(fā)⊥a,l⊥b”是“l(fā)⊥α”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)是兩條不同直線,是兩個不同平面,下列四個命題中正確的是(  )
A.若所成的角相等,則B.若,,則
C.若,,,則D.若,,,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是兩條不重合的直線,是三個不重合的平面,則的一個充分條件是(     )
A.
B.
C.
D.是異面直線,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè),b,c是空間三條不同的直線,是空間兩個不同的平面,則下列命題不成立的是(    )
A.當時,若,則
B.當,且內(nèi)的射影時,若b⊥c,則⊥b
C.當時,若b⊥,則
D.當時,若c∥,則b∥c

查看答案和解析>>

同步練習冊答案