. 設(shè)O、A、M、B為平面上四點(diǎn),,且,則

     A.點(diǎn)M在線段AB上                               B.點(diǎn)B在線段AM上

     C.點(diǎn)A在線段BM上                              D.O、A、B、M四點(diǎn)共線


解析:

由題意可知:,即,所以A,M,B三點(diǎn)共線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)拋物線方程為x2=2py(p>0),M為直線y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A,B.
(Ⅰ)求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)已知當(dāng)M點(diǎn)的坐標(biāo)為(2,-2p)時(shí),|AB|=4
10
.求此時(shí)拋物線的方程;
(Ⅲ)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn)D在拋物線x2=2py(p>0)上,其中,點(diǎn)C滿足
OC
=
OA
+
OB
(O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•?诙#┰O(shè)O,A,B,M為平面上四點(diǎn),
OM
=
λOA
+(1-λ)
OB
,λ∈(0,1),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年山東卷理)(本小題滿分14分)

如圖,設(shè)拋物線方程為x2=2py(p>0),M為 直線y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A,B.

(Ⅰ)求證:A,MB三點(diǎn)的橫坐標(biāo)成等差數(shù)列;

(Ⅱ)已知當(dāng)M點(diǎn)的坐標(biāo)為(2,-2p)時(shí),,求此時(shí)拋物線的方程;

(Ⅲ)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn)D在拋物線上,其中,點(diǎn)C滿足O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

. 設(shè)O、A、M、B為平面上四點(diǎn),,且,則

     A.點(diǎn)M在線段AB上                               B.點(diǎn)B在線段AM上w.w.w.k.s.5.u.c.o.

     C.點(diǎn)A在線段BM上                              D.O、A、B、M四點(diǎn)共線

查看答案和解析>>

同步練習(xí)冊(cè)答案