13.下列說法正確的個數(shù)為( 。
①統(tǒng)計中用相關系數(shù)r來衡量兩個變量之間的線性關系的強弱.線性相關系數(shù)r越大,兩個變量的線性相關性越強;反之,線性相關性越弱.
②回歸直線$\widehat{y}$=$\widehat$x+$\widehat{a}$一定通過樣本點的中心$(\overline x,\overline y)$.
③為了了解某地區(qū)參加數(shù)學競賽的1003名學生的成績情況,準備從中抽取一個容量為50的樣本,現(xiàn)采用系統(tǒng)抽樣的方法,需要從總體中剔除3個個體,在整體抽樣過程中,每個個體被剔除的概率和每個個體被抽到的概率分別是$\frac{3}{1003}$和$\frac{50}{1000}$.
④將一組數(shù)據(jù)中每個數(shù)都加上或者減去同一個常數(shù)后,方差恒不變.
A.0個B.1個C.2個D.3個

分析 由相關系數(shù)與相關關系的關系判斷①;由回歸直線$\widehat{y}$=$\widehat$x+$\widehat{a}$一定通過樣本點的中心判斷②;根據(jù)統(tǒng)抽樣方法的公平性即抽樣過程中每個個體被抽到的概率是相等的判斷③;根據(jù)方差的意義判斷④.

解答 解:①統(tǒng)計中用相關系數(shù)r來衡量兩個變量之間的線性關系的強弱.線性相關系數(shù)|r|越大,兩個變量的線性相關性越強;反之,線性相關性越弱,①錯誤.
②回歸直線$\widehat{y}$=$\widehat$x+$\widehat{a}$一定通過樣本點的中心$(\overline x,\overline y)$,②正確.
③為了了解某地區(qū)參加數(shù)學競賽的1003名學生的成績情況,準備從中抽取一個容量為50的樣本,現(xiàn)采用系統(tǒng)抽樣的方法,需要從總體中剔除3個個體,在整體抽樣過程中,每個個體被剔除的概率和每個個體被抽到的概率分別是$\frac{3}{1003}$和$\frac{50}{1003}$,③錯誤.
④將一組數(shù)據(jù)中每個數(shù)都加上或者減去同一個常數(shù)后,方差恒不變,④正確.
∴正確的命題有2個.
故選:C.

點評 本題考查命題的真假判斷與應用,關鍵是對統(tǒng)計知識的熟練掌握,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.設全集U={x|x<4,x∈N},A={0,1,2},B={2,3},則B∪(∁UA)等于(  )
A.B.{3}C.{2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知點A(2,1)和B(-1,3),若直線3x-2y-a=0與線段AB相交,則a的取值范圍是( 。
A.-4≤a≤9B.a≤-4或a≥9C.-9≤a≤4D.a≤-9或a≥4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F做圓x2+y2=a2的切線,切點為M,切線交y軸于點P,且$\overrightarrow{FM}$=2$\overrightarrow{MP}$,則雙曲線的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖,面積為4的矩形ABCD中有一個陰影部分,若往矩形ABCD中隨機投擲1000個點,落在矩形ABCD的非陰影部分中的點數(shù)為350個,試估計陰影部分的面積為( 。
A.1.4B.1.6C.2.6D.2.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,正三棱柱ABC-A1B1C1的底面邊長是2,側棱長是$\sqrt{3}$,D是AC的中點.
(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)求二面角A-A1B-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若橢圓$\frac{y^2}{16}+\frac{x^2}{9}=1和雙曲線\frac{y^2}{4}-\frac{x^2}{5}=1$的共同焦點為F1、F2,P是兩曲線的一個交點,則|PF1|•|PF2|的值為(  )
A.12B.14C.3D.21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日    期1月10日2月10日3月10日4月10日5月10日6月10日
晝夜溫差x(°C)1011131286
就診人數(shù)y(個)222529261612
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關于x的線性回歸方程y=bx+a;
(附:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知直線l過點A(3,0),B(0,4),則直線l的方程為4x+3y-12=0.

查看答案和解析>>

同步練習冊答案