6.拋物線x2=$\frac{1}{4}$y上的一點(diǎn)M到焦點(diǎn)的距離為1,則點(diǎn)M到x軸的距離是( 。
A.$\frac{17}{16}$B.$\frac{15}{16}$C.1D.$\frac{7}{8}$

分析 由拋物線方程,求出焦點(diǎn)F.設(shè)M(x0,y0),利用拋物線的定義,列式并解之即可得到點(diǎn)M的橫坐標(biāo).

解答 解:∵拋物線方程為x2=$\frac{1}{4}$y,
∴拋物線的焦點(diǎn)F(0,$\frac{1}{16}$)
設(shè)點(diǎn)M(x0,y0),得y0+$\frac{1}{16}$=1,解之得y0=$\frac{15}{16}$
故選:B.

點(diǎn)評(píng) 本題給出拋物線上一點(diǎn)到焦點(diǎn)的距離,求該點(diǎn)的橫坐標(biāo).考查了拋物線的定義與標(biāo)準(zhǔn)方程,拋物線的簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,某幾何體的三視圖是三個(gè)半徑相等的圓及每個(gè)圓中兩條互相垂直的半徑,半徑長(zhǎng)度為2,則該幾何體的表面積是( 。
A.17πB.18πC.20πD.28π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)長(zhǎng)軸與短軸的和為18,焦距為6;
(2)焦點(diǎn)在x軸上過(guò)點(diǎn)(0,2),長(zhǎng)軸長(zhǎng)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.空間四邊形ABCD中,E、F分別為AC、BD中點(diǎn),若CD=2AB,EF⊥AB,則直線EF與CD所成的角的度數(shù)為30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)滿足對(duì)于任意實(shí)數(shù)x,都有f(-x)=f(x),且當(dāng)x1,x2∈[0,+∞),x1≠x2時(shí),$\frac{{f({x_1})-f({x_2})}}{{{x_1}-x}}>0$都成立,則下列結(jié)論正確的是( 。
A.f(-2)>f(0)>f(1)B.f(-2)>f(1)>f(0)C.f(1)>f(0)>f(-2)D.f(1)>f(-2)>f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(1)當(dāng)a=-$\frac{10}{3}$時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)僅在x=0處有極值,求a的取值范圍;
(3)若對(duì)于任意的a∈[-2,2],不等式f(x)≤1在[-1,0]上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.現(xiàn)有四個(gè)函數(shù):①y=x•sinx,②y=x•cosx,③y=x•|cosx|,④y=x•2x 的部分圖象如圖,但順序被打亂,則按照從左到右將圖象對(duì)應(yīng)的函數(shù)序號(hào)正確的排列是①④②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知定點(diǎn)${F_1}(-\sqrt{2},0)$,動(dòng)點(diǎn)B是圓${F_2}:{(x-\sqrt{2})^2}+{y^2}=12$(F2為圓心)上一點(diǎn),線段F1B的垂直平分線交BF2于P.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若直線y=kx+2(k≠0)與P點(diǎn)的軌跡交于C、D兩點(diǎn).且以CD為直徑的圓過(guò)坐標(biāo)原點(diǎn),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)已知雙曲線的一條漸近線方程是y=-$\frac{3}{2}$x,焦距為2$\sqrt{13}$,求此雙曲線的標(biāo)準(zhǔn)方程;
(2)求以雙曲線$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案